

A Spatio-Temporal Multidimensional Model and

a Query Language for Seasons

Modelo Multidimensional Espacio-Temporal y

Lenguaje de Consulta para Temporadas

by

Francisco Javier Moreno Arboleda

A Thesis Submitted to the

Universidad Nacional de Colombia, Sede Medellín

in Partial Fulfillment of the

Requirements for the degree of

DOCTOR EN INGENIERÍA-SISTEMAS

Major Subject: Data Warehouses

Universidad Nacional de Colombia,
Sede Medellín

2010

 2

Examining Committee

Fernando Arango Isaza, Ph.D,

Thesis Adviser,

Universidad Nacional de Colombia, Sede Medellín.

Renato Fileto, Ph.D,

Member,

Universidade Federal de Santa Catarina, Brazil.

John Freddy Duitama Muñoz, Ph.D,

Member,

Universidad de Antioquia, Colombia.

Gloria Lucía Giraldo Gómez, Ph.D,

Member,

Universidad Nacional de Colombia, Sede Medellín.

 3

To my mother, for her love

To Paddy McAloon, for his talent

To George Michael, for his voice

To Mikhail Tal, for his mind

 4

Acknowledgments

I would like to thank all the people who made this thesis possible. First, my adviser Professor

Fernando Arango for his brilliant guidance. Without his supervision, this work would have been a

mess!

I would also like to thank Professor Renato Fileto for agreeing to be on my thesis committee and for

his valuable help, especially during my stay (should I say season? Now everything makes sense!) in

Universidade Federal de Santa Catarina, Florianopolis. I wish someday I could write with his

precise and elegant style.

A special thanks to Lynn Schlecker for helping me with the English language, she is not only my

editor but just a friend.

I cannot forget the University where I grew up as an engineer, my Alma Mater, Universidad de

Antioquia. Professors (and friends) Freddy Duitama, who introduced me in the world of databases,

and Professor Roberto Flórez who showed me the world of algorithms.

Thanks to Universidad Nacional de Colombia and Colciencias for making my doctoral studies a

feasible experience.

Finally, although it might sound a bit foolish, my deep (so deep!) gratitude to Terpsichore, muse of

music, my main source of inspiration, what can I do? Without it, I am nothing…I wish I could list

all my favorites artists here but it would require another thesis! Just a few of them: The Brand New

Heavies, Ce Ce Peniston, Curiosity Killed the Cat, Dina Carroll, George Michael (the Maestro!, the

Entertainer!), Kirsty Hawkshaw (Opus III, the voice of an angel), Lisa Moorish, Lisa Stansfield,

Mica Paris, Prefab Sprout, Republica, Sonia Evans, Soul II Soul, Sophie Ellis-Bextor, Sunscreem,

Swing Out Sister…For robust and emotional reasons this work is dedicated to them.

Thanks for making me happy.

Francisco J. Moreno A.

2010

 5

Abstract

A data warehouse (DW) is usually modelled using a multidimensional view of data. In a

multidimensional model a set of dimensions is associated with a subject of analysis called fact.

Each dimension is composed of a non-empty set of levels which are organized hierarchically.

Usually, a dimension is considered static in a DW; however, the dimension schema and dimension

data can evolve. In this thesis, we focus on a type of dimension data change known as

reclassification, i.e., when a member (instance) of a level changes its parent (a member of a higher

level of the same dimension). The first contribution of this thesis is the development of a formal

temporal multidimensional model, where different temporal units of reclassification are supported.

For example, salespersons can be hired by stores for periods of days, whereas stores can be changed

of status annually. As the second contribution, we introduce and formalize the notion of season, an

interval during which a member of a level is associated with another one, and propose query

language constructs to enable the formulation of season queries. For example, “What was the total

value sold by a salesperson in his first season in a store?” We also extend season queries with

spatial features enabling the formulation of queries such as “What was the total value sold by a

salesperson in his nth season in a given geographic region?”

Finally, we also make contributions on other related spatio-temporal DW issues: a) we propose a

conceptual model to incorporate a trajectory as a first-class citizen in a DW, b) we extend a spatial

OLAP operator with several spatial aggregate functions, and c) we address the problem of change in

the degree of containment, another type of dimension data change, where a member of a level does

not necessarily change its parent, but the degree (percentage) of association with it.

 6

Resumen

Una bodega de datos (BD) se modela usualmente mediante una vista multidimensional de los datos.

En un modelo multidimensional, un conjunto de dimensiones se asocia con un tema de análisis

denominado hecho. Cada dimensión se compone de un conjunto no vacío de niveles los cuales están

organizados jerárquicamente. Usualmente, una dimensión se considera estática en una BD; sin

embargo, el esquema y los datos de una dimensión pueden evolucionar. Esta tesis se enfoca en un

tipo de cambio de datos dimensional conocido como reclasificación, es decir, cuando un miembro

(instancia) de un nivel cambia de padre (un miembro de un nivel superior en la misma dimensión).

La primera contribución de esta tesis es la concepción de un modelo temporal multidimensional

formal, donde se soportan diferentes unidades temporales de reclasificación. Por ejemplo, los

vendedores pueden ser contratados por las tiendas por períodos de días, mientras que las tiendas

pueden ser cambiadas de categoría anualmente. Como segunda contribución, se presenta y

formaliza el concepto de temporada, un intervalo durante el cual un miembro de un nivel está

asociado con otro, y se proponen operadores de consulta que permiten la formulación de consultas

de temporada. Por ejemplo, “¿Cuál fue el valor total vendido por un vendedor en su primera

temporada en una tienda?” También se extienden las consultas de temporada con elementos

espaciales permitiendo la formulación de consultas tales como “¿Cuál fue el valor total vendido por

un vendedor en su enésima temporada en una región geográfica dada?”

Finalmente, otras contribuciones de la tesis se relacionan con aspectos de BD espacio-temporales:

a) se propone un modelo conceptual donde se incorporan trayectorias como elementos de primera

clase en una BD, b) se extiende un operador OLAP espacial con diversas funciones de agregación

espacial y c) se aborda el problema del cambio en el grado de inclusión, otro tipo de cambio de

datos dimensional, donde un miembro de un nivel no necesariamente cambia de padre, sino el grado

(porcentaje) de asociación con éste.

 7

Contents

List of Figures ... 10

List of Tables .. 13

Chapter 1: Introduction ... 15

1.1 Research context ... 15

1.1.1 Data warehouse .. 15

1.1.2 Temporality and spatiality .. 17

1.1.3 Trajectories and reclassification .. 19

1.1.4 Seasons .. 22

1.1.5 Change in the degree of containment .. 24

1.2 Thesis organization.. 25

1.3 Objetives ... 27

1.3.1 General objective .. 27

1.3.2 Specific objectives .. 27

Part I: Preliminar Works ... 29

Chapter 2: A Multigranular Temporal Multidimensional Model .. 30

2.1 Introduction ... 30

2.2 Temporal multidimensional model .. 30

2.2.1 Dimensions... 31

2.2.2 Handling time ... 31

2.2.3 Adding time to dimensions ... 32

2.2.4 Dimensions constraints ... 33

2.2.5 Facts ... 35

2.2.6 Fact constraints ... 37

2.3 Conclusion .. 37

Chapter 3: Supporting the Change in the Degree of Containment in a Multidimensional Model 39

3.1 Introduction ... 39

3.2 Motivating example ... 40

3.3 Multidimensional model with partial containment ... 43

3.3.1 Multidimensional schema ... 43

3.3.2 Dimension instance .. 44

3.3.3 Degree of containment .. 45

3.3.4 Fact-dimension relation .. 46

 8

3.3.5 Fact characterization ... 46

3.3.6 Multidimensional object ... 47

3.4 Support of the change in the degree of containment ... 47

3.5 Integration into a multidimensional language... 49

3.5.1 Language .. 49

3.5.2 Some basic experiments.. 50

3.6 Conclusions and future work ... 52

Chapter 4: Extensions to the Map Cube Operator .. 54

4.1 Introduction ... 54

4.2 From a conventional DW to a spatial DW .. 56

4.3 The map cube operator .. 57

4.3.1 Overview .. 57

4.3.2 Grammar review ... 59

4.3.3 Proposed grammar changes .. 60

4.4 Spatial aggregate functions .. 61

4.5 Case study – analyzing crimes ... 62

4.6 Conclusions and future work ... 66

Part II. Trajectories ... 68

Chapter 5: A Conceptual Trajectory Multidimensional Model ... 69

5.1 Introduction ... 69

5.2 Motivating example ... 70

5.3 Trajectories ... 73

5.3.1 Composed multivalued timestamped measures ... 77

5.3.2 Composition of facts ... 79

5.3.3 Granularity and aggregation of measures .. 81

5.4 Conclusions and future work ... 82

Part III. Seasons .. 83

Chapter 6: Season Queries on a Temporal Multidimensional Model .. 84

6.1 Introduction ... 84

6.2 Seasons ... 86

6.3 A new operator for season queries ... 88

6.3.1 Seasons_l1_lj operator: resulting fact schema .. 90

6.3.2 Seasons_l1_lj operator: resulting fact table .. 91

 9

6.3.3 Season queries examples .. 94

6.4 A brief comparison with SQL .. 95

6.5 Conclusions and future works .. 97

Chapter 7: Spatial Season Queries on a Spatio-temporal Multidimensional Model 98

7.1 Introduction ... 98

7.2 Motivating example ... 99

7.3 The Spatial_Season operator.. 102

7.4 Spatial_Season operator example... 106

7.5 Spatial season queries examples .. 108

7.6 Some basic experiments and prototype .. 109

7.7 Conclusions and future work ... 113

Chapter 8: Conclusions, Future Work, and Publications .. 114

8.1 Conclusions and future work ... 114

8.2 Publications ... 115

Appendix: Seasons Between Salesperson and Status: An SQL Solution 117

References .. 120

 10

List of Figures

Figure 1.1. Some levels of: a) SALESPERSON dimension and b) a PRODUCT dimension. 16

Figure 1.2. Monthly total value sold by store. .. 17

Figure 1.3. Location of the stores and the total value sold by each one. ... 18

Figure 1.4. Spatial query window. ... 18

Figure 1.5. Center of mass and MBR of crimes committed in city ct1. ... 19

Figure 1.6. Trajectory of the crimes of suspect susp1. .. 21

Figure 1.7. Trajectory of a salesperson sp1 through stores (in blue) and spatial query window. 24

Figure 1.8. Research topics and their relationships. ... 25

Figure 1.9. Structure of the thesis. ... 27

Figure 2.1. The SALESPERSON dimension schema. .. 31

Figure 2.2. TRG between the Salesperson level and the Store level. .. 32

Figure 2.3. TRGs among Salesperson, Store, and Status levels. ... 34

Figure 2.4. A temporal multidimensional model for sales. ... 36

Figure 2.5. Notations to represent our multidimensional model: a) level, b) hierarchy, c)

cardinalities, and d) fact relationship. Source [Malinowski 2008]. ... 36

Figure 3.1. Road infrastructure of a country. ... 40

Figure 3.2. Multidimensional model for the analysis of accidents. ... 41

Figure 3.3. Change in the partial containment: growth of the highway hw2. 42

Figure 3.4. Dimension types: a) TIME and b) LOCATION. .. 44

Figure 3.5. Dimension instances: a) time and b) location. .. 45

Figure 3.6. Facts ac1 and ac5 associated with dimension values. ... 46

Figure 3.7. Degree of containment of the highway hw2 in the departments dep2 and dep3: a) between

2008-Jan-01 and 2008-Jan-14 and b) from 2008-Jan-15. ... 48

Figure 3.8. Degree of containment of the highway hw1 in the department dep1: a) in 2008-Jan-31

and b) in 2008-Feb-01. .. 48

Figure 3.9. Configuration of highways: a) highway M-002D in 2002, b) highway M-002D in 2005,

c) highway M-115 in 2002, d) highway M-115 in 2005, e) highway M-185 in 2002, and f) highway

M-185 in 2005. ... 51

Figure 4.1. A conventional DW model for crimes. .. 56

Figure 4.2. Adding a spatial measure: a) Crime_points measure, b) the points where crimes were

committed, and c) the total number of victims and the center of mass of crimes in each

neighborhood. ... 57

Figure 4.3. Original map cube grammar. ... 59

 11

Figure 4.4. New map cube grammar. ... 61

Figure 4.5. Examples of spatial aggregate functions for points: a) input set, b) convex hull, 62

c) MBR, and d) center of mass. ... 62

Figure 4.6. A spatial DW for crimes. ... 63

Figure 4.7. Maps: a) Neighborhoods_Map and b) Crimes_Map. .. 63

Figure 4.8. Concentration of crimes by neighborhood and type of crime. 65

Figure 4.9. Concentration of crimes by neighborhood. .. 66

Figure 4.10. Voronoi diagram of crimes by neighborhood. .. 66

Figure 5.1. A conventional multidimensional model for analyzing taxi journeys. 70

Figure 5.2. Two trajectories considered common within specific temporal and spatial thresholds. . 72

Figure 5.3. Two trajectories similar in shape. .. 72

Figure 5.4. Assembling two trajectories. We assume that the object moves along a straight line from

End1 to Begin2 at a constant speed. .. 72

Figure 5.5. Three trajectories, two of them passed through region R during the same day. 73

Figure 5.6. Trajectory of a moving point. .. 74

Figure 5.7. Three types of observation for a taxi trajectory. ... 75

Figure 5.8. Notations for a trajectory of a moving: a) generic geometry, b) point, c) line, d) region,

and e) group of regions.. 76

Figure 5.9. Notations for: a) simple geometries and b) complex geometries................................... 76

Source: [Parent 1999], [Malinowski 2008]. ... 76

Figure 5.10. Representation of types of observation: a) a trajectory of a moving point with n types

of observation, b) a taxi trajectory with three types of observation, and c) instances of types of

observation of b). .. 77

Figure 5.11. A multidimensional model for analyzing taxi trajectories using composed multivalued

timestamped measures... 78

Figure 5.12. A multidimensional model for analyzing taxi trajectories using composition of facts. 80

Figure 6.1. Reclassification trajectories of: a) a salesperson sp1 and b) a product pd1. 85

Figure 6.2. Examples of seasons. ... 88

Figure 6.3. Grouping the facts of the first season of salesperson sp1 in store st1. 90

Figure 6.4. Original (left) and resulting schema (right) generated by Seasons_l1_lj. 91

Figure 6.5. Resulting schema of Seasons_Salesperson_Store(Sales) operation. 93

Figure 6.6. Outline of the Seasons_Salesperson_Store(Sales) operation. 94

Figure 6.7. Some tables of the relational implementation of our temporal multidimensional model

for sales... 96

Figure 7.1. A multidimensional model for Sales. ... 100

 12

Figure 7.2. Rotation of salesperson sp1 between the stores and spatial query window R1. 101

Figure 7.3. Spatial query window R2. .. 102

Figure 7.4. SALESPERSON dimension (first version). ... 102

Figure 7.5. SALESPERSON dimension (second version). ... 103

Figure 7.6. Neighborhoods of city ct1 and spatial query window R2. .. 103

Figure 7.7. Rotation of a salesperson between the stores and two search regions (region set R). .. 105

Figure 7.8. Spatial_Season operator: a) original schema and b) resulting schema. 106

AL = {g(m)i} where m �{m1, …, mm}. .. 106

Figure 7.9. Sample data of Sales fact table. ... 107

Figure 7.10. Periods of association of salesperson sp1 with the stores. ... 107

Figure 7.11. Results of Spatial_SeasonR1, Salesperson.Store, {SUM(Sale_value)}(Sales) = Sales’. 108

Figure 7.12. Spatial_Season operator: a) original cube and b) resulting cube. 108

(The operator is illustrated for a single salesperson). ... 108

Figure 7.13. Total sales value made by six salespersons in their first six seasons. 110

Figure 7.14. Prototype interface for spatial season queries. .. 111

Figure 7.15. Definition of a spatial season query. .. 112

Figure 7.16. Result of a spatial season query. .. 112

 13

List of Tables

Table 1.1. Total value sold by product in each store. ... 16

Table 1.2. Sample data of crimes (version 1). .. 19

Table 1.3. Taxis trajectories. ... 20

Table 1.4. Sample data of crimes (version 2). .. 21

Table 1.5. Total value sold by each salesperson in each season in each store. 23

Table 2.1. Examples of rollup functions for a SALESPERSON dimension schema instance. 33

Table 2.2. Mapping example. .. 34

Table 2.3. A fact table of the fact schema SALES. .. 37

Table 3.1. Sample data of the fact table of accidents. ... 41

Table 3.2. Calculation of the total number of accidents in the department dep2 (a degree of

containment equal to 0.2 of the highway hw2 in the department dep2 is considered). 42

Table 3.3. Calculation of the total number of accidents in the department dep2 (current degree of

containment of the highway hw2 in the department dep2 is considered). ... 43

Table 3.4. Calculation of the total number of accidents in the department dep2 (the degree of

containment when the facts occurred is considered). ... 43

Table 3.5. Sample data of the DC function for (highway, department). .. 48

hw highway, dep department, and t dom(Day). .. 48

Table 3.6. Total number of accidents in 2002 and 2005. .. 51

Table 3.7. Degree of containment of each highway in each department in 2002 and 2005. 51

Table 3.8. Calculations of the total number of accidents: i) using the degree of containment when

the accidents occurred, ii) using the degree of containment in 2002, and iii) using the degree of

containment in 2005. ... 52

Table 4.1. Crimes table. .. 56

Table 4.2. Crimes table with spatial measure Crime_points. .. 57

Table 4.3. Example of map cube sentence. .. 58

Table 4.4. Cuboid (Neighborhood, Crime_type). ... 64

Table 4.5. Cuboid (Neighborhood). ... 65

Table 5.1. Sample data of Taxi_journeys fact relationship. .. 70

Table 5.2. Measures of our multidimensional model of taxi trajectories. .. 78

Table 5.3. Sample data of Taxi_journeys fact relationship. .. 78

Table 5.4. Comparison of our trajectory modelling approaches. .. 80

Table 6.1. Rollup values (stores) for salesperson sp1. .. 87

Table 6.2. Rollup values (status) for stores st1 and st2. ... 87

 14

Table 6.3. User requests and query language requirements. ... 89

Table 6.4. Seasons_l1_lj operator algorithm. .. 91

Table 6.5. Sample data of Sales fact table. ... 93

Table 6.6. Resulting fact table of Seasons_Salesperson_Store(Sales) operation. (1) =

SUMUnits_sold, (2)= SUMSale_value, (3) = AVGUnits_sold, and (4) = AVGSale_value. 93

Table 6.7. Season queries examples... 95

Table 7.1. Sample data of Sales fact relationship. .. 100

Table 7.2. Spatial_Season operator algorithm. ... 106

Table 7.3. Example of Spatial_Season operator algorithm. .. 108

Table 7.4. Spatial season queries examples.. 109

 15

Chapter 1: Introduction

1.1 Research context

1.1.1 Data warehouse

A data warehouse (DW) [Inmon 2005], [Kimball 2008] is a specialized database for efficient

querying and analysis of integrated information from a wide variety of sources [Yang 1998]. Since

the past decade, DWs have enjoyed a remarkable and increasing popularity in both the research

community and industry [Inmon 2005], [Kimball 2008]. DWs have proved their usefulness as

systems for integrating information and supporting the decision-making process.

DWs are usually modelled using a multidimensional view of data. Although there are several

multidimensional models [Agrawal 1997], [Gyssens 1997], [Vassiliadis 1998], [Golfarelli 1998],

[Lehner 1998], [Pedersen 2001a], [Jensen 2004], [Timko 2005], [Kumar 2008]; they all share a set

of key concepts such as dimension, fact, level, level attribute, hierarchy, and measure.

A set of dimensions is associated with a subject of analysis called fact. For example, in a retail sales

scenario, SALESPERSON and PRODUCT are dimensions that are typically associated with a fact

sale. A multidimensional collection of data arranged in this way is commonly referred to as a data

cube [Jarke 2003] (to be referred to hereinafter in this thesis simply as cube).

A dimension is composed of a non-empty set of levels. For example, in Figure 1.1 Salesperson,

Store, and Status are levels of the SALESPERSON dimension (the crowfoot connector represents a

one-to-many relationship); Product and Category are levels of the PRODUCT dimension. A level

in turn has attributes [Kumar 2008], which provide supplementary information about the level. For

example, Name and Salary are typical attributes of the Salesperson level (for simplicity, we do not

show attributes of levels in our diagrams).

 16

Figure 1.1. Some levels of: a) SALESPERSON dimension and b) a PRODUCT dimension.

The dimension levels are structured as a hierarchy according to the analysis needs in order to enable

the data analysis at various levels of detail [Torlone 2003]. A hierarchy plays the role of a

classification hierarchy (often called roll-up hierarchy [Golfarelli 2009b]), i.e., it classifies (groups)

members (instances) of a level at a higher member level of the hierarchy. For example, in our

SALESPERSON dimension, salespersons are grouped into stores and stores are classified

according to their statuses; in our PRODUCT dimension, products are classified according to their

categories.

On the other hand, a fact has measures, i.e., business metrics that analysts want to evaluate and

report on, e.g., number of units of a product sold and sale value are typical measures of a sale. This

way of organizing the data allows us to perform some analytical queries in a flexible and intuitive

way: What was the total value sold by each salesperson? By each store? By product in each store?

(See Table 1.1) What was the average total number of units sold by product category in each store?

Table 1.1. Total value sold by product in each store.

Levels Measure

Store Product Sale_value

st1 pd1 1500

st1 pd2 1800

st1 pd3 1700

st2 pd1 4000

st2 pd2 2000

st3 pd1 3000

st3 pd3 4000

st4 pd1 5000

…

Status

Store

Salesperson

Category

Product

a) b)

 17

1.1.2 Temporality and spatiality

TIME is an omnipresent dimension in DWs [Malinowski 2006]. It allows the distribution and

comparisons of facts in different periods and in different time granularities (days, months, years);

thus the previous queries can be complemented with temporal data, making possible more detailed

analysis, e.g., total value sold by each store monthly, see Figure 1.2.

Figure 1.2. Monthly total value sold by store.

Note, however, that although DWs have a TIME dimension, this dimension is not used to manage

other temporal changes that can occur in a DW. Further below, in this section, we present a short

overview on this issue.

On the other hand, the explosion of technologies such as GIS (Geographic Information System) and

GPS (Global Positioning System) [Turner 2010] demand the management of other data types and

enable the formulation of other useful analytical queries. As a consequence, DWs have been

enriched, e.g., with spatial features [Malinowski 2008].

In an analogous way to the TIME dimension, the incorporation of spatial features in a DW could

help to analyze the distribution and comparisons of facts through space (usually a geographic

space). For example, in Figure 1.3 we show the location of the stores and the total value sold by

each one.

$

10000

20000

30000

40000

50000

60000

2009-

Jan

2009-

Feb

2009-

Mar

2009-

Apr

2009-

May

2009-

Jun

2009-

Jul

70000
Notations

st1

st2

st3

st4

Time

 18

Figure 1.3. Location of the stores and the total value sold by each one.

Indeed, spatiality can be incorporated in the dimensions and/or the facts [Bimonte 2005]. For

example, if we store the geographic coordinates of stores in the Store level of the SALESPERSON

dimension, the users are now enabled to pose queries such as: What was the total value sold by the

stores located in a certain geographic region? (A region that can be specified by a spatial window,

as illustrated by the dashed box of Figure 1.4)

Figure 1.4. Spatial query window.

It is also possible to incorporate spatial measures to the facts [Han 1998], [Shekhar 2001] and

perform their aggregation using spatial aggregate functions such as geometric union, minimum

bounding rectangle (MBR), center of mass, convex hull, among others; as we propose in [Moreno

2009a] by extending the map cube operator: an operator that supports spatial aggregation in a

spatial DW, but only using geometric union, and enables visualization of information through maps

[Shekhar 2001], see Chapter 4. For example, in a DW for crimes, consider a measure Crime_points

which represents the locations (points) where crimes were committed in a city, see Table 1.2 and

Figure 1.5. In Figure 1.5 we show the center of mass and the MBR of all the crimes committed in

city ct1 according to the data from Table 1.2.

Notations:
City

Store

ct1 ct2

cti: City i

sti: Store i

st1

st2

st3

st4

$50000

$60000

$50000 $70000

Notations:
City

Store

ct1 ct2

cti: City i

sti: Store i

st1

st2

st3

st4
Total value sold by the

stores inside the
dashed region:

120000

 19

Table 1.2. Sample data of crimes (version 1).

Levels Measure
Day City Crime_points

2009-Jan-01 ct1 {p1, p2}
2009-Jan-02 ct1 {p3}
2009-Jan-03 ct1 {p4, p5}
2009-Jan-04 ct1 {p6}

…
2009-Jan-01 ct2 {p889}

…

Figure 1.5. Center of mass and MBR of crimes committed in city ct1.

While in multidimensional models such as those proposed in [Agrawal 1997], [Gyssens 1997],

[Vassiliadis 1998], [Golfarelli 1998], [Lehner 1998], [Pedersen 2001a], [Kumar 2008]; the

hierarchical relationship between the levels captures their full containment, partial containment is

prevalent in spatial data. The partial containment allows us to represent situations where a

dimension value is not fully contained in another one. For example, in our SALESPERSON

dimension, a salesperson is fully contained in a store and a store is fully contained in a status; in our

PRODUCT dimension, a product is fully contained in a category; while in a LOCATION

dimension with Highway and Department levels, a highway is not necessarily fully contained in a

department. For instance, 0.2 (20%) of a highway hw1 could be contained in a department and 0.8

(80%) in another department (this percentage is termed degree of containment [Jensen 2004]).

Thus, if a fact, e.g., an accident is associated with highway hw1, we cannot assure in which

department the accident occurred (unless more information is given, e.g., the coordinates of the

accident); therefore, a query language that is intended to be used in this scenario must deal with this

uncertainty [Jensen 2004], [Timko 2005]. Another scenario where partial containment might be

useful would be to analyze how a jungle is shrinking in a country, e.g., the Amazon rainforest

shrinking in Brazil, Peru, and Colombia, among other countries.

1.1.3 Trajectories and reclassification

The conjunction of temporal and spatial features in a DW can lead to a richer dynamics. A survey

on this subject was presented in [Moreno 2007a], [Moreno 2007b]. In particular, in our work, we

ct1
x p1 x p2

x p3
x p4

x p5 x p6

Notations:

X Crime
Center of mass of crimes

MBR of crimes

 20

consider that the notion of trajectory can be incorporated as a first-class citizen (a complex data

type) in a DW.

Informally, a trajectory is the evolving position of an object travelling in a space (it could be an

abstract space) during an interval [Spaccapietra 2008], a definition that entails the inherent spatio-

temporal nature of a trajectory.

The incorporation of a trajectory as a first-class citizen in a DW enables the formulation of valuable

queries for decision-makers. For example, consider the trajectory followed by a taxi during a day

and consider the following queries: what were the three most profitable taxi trajectories in the last

month? How many taxi trajectories intersected a given region within the last two hours? The

trajectory aggregation problem could also be addressed, e.g., what is the meaning of adding,

averaging trajectories?

We believe that, just as temporal and spatial features, a trajectory can be incorporated in the

dimensions and/or the facts. In our work, we propose the conceptual modelling of trajectories as

complex measures [Moreno 2010d], see Chapter 5. Thus, we can consider a whole trajectory as a

measure, e.g., the trajectory followed by a taxi in a city during a day, see Table 1.3.

Table 1.3. Taxis trajectories.

Levels Measure

Day Taxi Trajectory
2009-Jan-01 tx1

2009-Jan-02 tx1

…

2009-Jan-01 tx2

…

Note that a trajectory could be stored explicitly or implicitly, e.g., we could infer a trajectory from

the facts: facts are almost always associated with both spatial and temporal dimensions (a fact

 21

occurs in a specific place and at a specific time). For example, if we consider the dimensions

SUSPECT, TIME, PLACE associated with crime facts, we could generate the trajectory of a

potential serial killer, see Table 1.4 and Figure 1.6. In this example, for simplicity we assume that

the serial killer moves from one point to another in a straight line. This issue is in an exploratory

phase of development as an extension of our current work [Moreno 2009a], see Chapter 4.

Table 1.4. Sample data of crimes (version 2).

Levels Measure

Suspect Day Place #Victims
susp1 2009-Feb-11 pl1 1
susp1 2009-Feb-22 pl2 1
susp1 2009-Mar-13 pl3 2
susp1 2009-Mar-25 pl4 1

…
susp2 2009-Jan-15 pl29 2

…

Figure 1.6. Trajectory of the crimes of suspect susp1.

As we mentioned before, we shall now pass on to present a short overview regarding temporal

changes that can occur in a DW. In practice, due to changing requirements, dimension schema and

dimension data can evolve [Hurtado 1999], [Golfarelli 2009a] although usually in a slow way

[Kimball 2008]. For example, in the SALESPERSON dimension the Status level could be dropped

and a City level could be added, some salespersons can change of store, some salespersons can

retire, while others are hired. Thus, the usual assumption that dimensions are static in a DW does

not hold in these situations.

Several works deal with dimension changes. Hurtado [1999] and Blaschka [1999] propose operators

to delete, insert, and update the dimension data and the dimension schema. In [Kaas 2004] operators

to change the DW schema are considered, among them operators to insert and delete dimension and

levels. Other authors [Eder 2001], [Body 2002], [Morzy 2004], [Golfarelli 2006], [Ravat 2006],

[Rechy-Ramirez 2006], [Wrembel 2007] focus on DW versioning, i.e., how to transform and/or

query data that span several DW versions caused by dimension changes. For example, how to

ct1

pl1

pl2
pl3

pl4

 22

answer consistently a query such as: What was the total value sold by each city in each month of

2009? (Considering that the City level was added to the DW only since May 2009). For a recent

survey on temporal issues related to DWs, the reader is referred to [Golfarelli 2009a]. Malinowski

[2008] also addresses other DW temporal changes, including time-varying measures.

In our work, we focus on an interesting type of dimension data change known as reclassification,

i.e., when a member of a level changes its parent (a member of a higher level of the same

dimension). For example, when a salesperson changes of store, or a store changes of status.

Although the management of reclassifications in a multidimensional model has been considered

[Chamoni 1999], Mendelzon [2000], Pedersen [2001a], [Vaisman 2004], [Malinowski 2008]; there

still remain several problems to be solved. For example, salespersons can be hired by stores for

periods of days, whereas stores can be changed of status annually. In order to devise an accurate

model for this situation, we propose a formal multigranular temporal multidimensional model

[Moreno 2009b], see Chapter 2, where different temporal units of reclassification are supported.

In addition, reclassifications require, from the query point of view, a careful handling in order to

avoid inconsistent results. For example, consider reclassifications of salespersons through stores

and suppose a user wants to know the total value sold by a salesperson sp1 when he/she has worked

in store st1; the query system must have the ability to find for each sale of sp1 the store where he/she

was working when the sale was made [Mendelzon 2000], [Vaisman 2004]. Although a query like

the previous one can be formulated in TOLAP [Mendelzon 2000], a temporal query language for

OLAP (On-Line Analytical Processing), reclassifications can lead to other interesting queries as we

shall see in the following subsection.

Note also that from the succession of reclassifications of a member of a level, we can infer a

trajectory: a reclassification trajectory. For example, the trajectory of a salesperson through stores

during his staying in an organization, the trajectory of a product through the different categories for

which it has been classified (in this last example, the space where the object moves is abstract).

1.1.4 Seasons

We want to note that in the context of trajectories arises the notion of season. We consider a season

an interval during which a moving object is associated with another object, e.g., a region. For

example, in the case of taxi trajectories, we can consider seasons of a taxi in a given region, and in

the case of the trajectory of a suspect, we can consider his/her seasons in a neighborhood or a city.

In our work (see Chapters 6 and 7) we focus on seasons resulting from reclassification trajectories.

 23

Thus, in the context of these trajectories, each reclassification represents an interval during which a

member of a level is associated with another one, i.e., a season of association between two members

of a dimension.

We believe that queries referring to seasons, called season queries in our work, can be valuable for

decision-makers. For example, consider the queries: What was the total value sold by each

salesperson in each season in each store? What was the total value sold by salesperson sp1 in his

first season in store st1? (See Table 1.5). To the best of our knowledge there is no language or

operator that facilitates the formulation of season queries in a compact and intuitive way. In

[Moreno 2010b], see Chapter 6, we propose query constructs to facilitate the formulation of this

type of queries.

Table 1.5. Total value sold by each salesperson in each season in each store.

Levels Measure

Salesperson Season Sale_value
sp1 First season in st1 2000
sp1 First season in st2 2000
sp1 Second season in st1 1750
sp1 First season in st4 1750
sp1 First season in st3 2500
sp1 Second season in st4 2100

…
sp2 First season in st2 2000

…

Moreover, season queries could also be enriched with spatial features enabling the formulation of

queries such as: What was the total value sold by sp1 in his nth season in a given geographic region?

In Figure 1.7, e.g., we show the total value sold by sp1 in his first season in the stores contained in

the dashed region. According to Table 1.5, the sales made by sp1 during his first and second season

in st1, and his first season in st2, contribute to the total requested (note that second season of sp1 in

st1 contributes to the answer because sp1 has not left the region). We refer to this type of query as

spatial season queries [Moreno 2010c], see Chapter 7.

 24

Figure 1.7. Trajectory of a salesperson sp1 through stores (in blue) and spatial query window.

1.1.5 Change in the degree of containment

Another type of dimension data change we are interested in is the change in the degree of

containment. For example, at a time ti the degree of containment of a highway in a department is

0.2, but at a time ti+1, this degree may change due to construction or destruction of highway

sections, or boundaries change between the departments. Note that this type of change can be

considered a reclassification, where a member of a level does not necessarily change its parent, but

the degree of association with it. Unfortunately, proposals which consider partial containment

[Jensen 2004], [Timko 2005] do not consider the change in the degree of containment between two

dimension values. Note that in order to obtain consistent results over time, the degree of

containment at the time when the facts occurred must be considered. We address this issue in

[Moreno 2009c], [Moreno 2010a], see Chapter 3.

We summarize our research topics in Figure 1.8.

Notations:
City

Store

ct1 ct2

cti: City i

sti: Store i

st1

st2

st3

st4
Total value sold by sp1

in his first season in
the stores contained in

the dashed region:
2000 + 2000 + 1750 =

5750

Here begins
the trajectory

of sp1

 25

Figure 1.8. Research topics and their relationships.

1.2 Thesis organization

The outline of this thesis is as follows. In accordance with the previous section and Figure 1.8, we

have covered the following topics.

Part I. Preliminar works:

 In Chapter 2 we propose a formal temporal multidimensional model which allows the

representation of reclassifications that can occur with different temporal units in a

dimension.

 In Chapter 3 we propose an extension to support the change in the degree of containment in

a formal multidimensional model.

 In Chapter 4 we extend the map cube operator in order to support different spatial aggregate

functions.

Temporal
aspect of

facts

Temporal
aspect of

dimensions Reclassification

Season
queries

Store a trajectory
as a complex

measure

Trajectory
operators

Spatial
season
queries

Evolution of
partial

containment

Generate a
trajectory from

the facts

Future work Topic published in
journal or conference

Trajectory

Spatial trajectory Reclasification
trajectory

Spatial
aspect of

facts

Spatial
aspect of

dimensions
Season

Reclasification trajectory season
 Spatial

trajectory
season

 26

These three chapters form the first part of the thesis. They consider a variety of issues related with

spatial and temporal DWs.

Part II. Trajectories:

 In Chapter 5 we extend a conceptual spatial multidimensional model by incorporating a

trajectory as a first-class citizen in a DW.

This chapter forms the second part of the thesis. It incorporates a trajectory as first-class citizen in a

DW. The notion of trajectory is later specialized in Part III, where the notion of reclassification

trajectory is introduced.

Part III. Seasons:

 In Chapter 6 we introduce and formalize the notion of season of reclassification around the

model of Chapter 2 and propose an operator for season queries.

 In Chapter 7 we extend our work from Chapter 6 in order to support spatial season queries.

These two chapters form the third part of the thesis. They focus on seasons, which can be

considered the core of the thesis.

Finally, we present conclusions and future work. In Figure 1.9 we outline the structure of the thesis.

Solid arrows show prerequisites, whereas dashed arrows show preferred, but not-mandatory, order

among chapters.

 27

Figure 1.9. Structure of the thesis.

1.3 Objetives

1.3.1 General objective
To improve the expressivity of DW query languages in order to facilitate the formulation of season

queries and spatial season queries.

1.3.2 Specific objectives
a. To define and characterize the notion of season, season queries, and spatial season queries.

Chapter 7
Spatial season

queries on a spatio-
temporal

multidimensional
model

Chapter 6
Season queries on

a temporal
multidimensional

model

Chapter 2
A multigranular

temporal
multidimensional

model

Chapter 3
Supporting the

change in the degree
of containment in a
multidimensional

model

Part II
Trayectories

Chapter 8
Conclusions and

future work

Chapter 4
Extensions to the

map cube
operator

Part III
Seasons

Chapter 5
A conceptual

trajectory
multidimensional

model

Part I
Preliminar

works

Chapter 1
Introduction

 28

b. To propose a multidimensional model that integrates the necessary spatio-temporal concepts to

solve the types of queries identified.

c. To propose query language constructs to facilitate the formulation of the types of queries

identified.

d. To compare the proposed query language constructs with a language, such as TOLAP or SQL, in

order to show its expressivity.

e. To develop a prototype and make basic experiments to validate the propose model and query

language constructs.

Through Chapters 2, 6 and 7, we develop a spatio-temporal multidimensional model, formalize the

notion of season and propose query language constructs for season and spatial season queries (along

with a basic prototype, experiments, and language comparisons); achieving in this way all the

proposed objectives. Although the rest of the chapters address issues that are somewhat beyond the

foreseen objectives, we consider these issues to be of particular relevance in the context of our

thesis research.

 29

Part I: Preliminar Works

 30

Chapter 2: A Multigranular Temporal Multidimensional Model

2.1 Introduction

As we mentioned in Chapter 1, dimension schema and dimension data can evolve. In this chapter,

we focus on a specific type of dimension data change, the reclassification, i.e., when a member

(instance) of a level changes its parent (a member of a higher level of the same dimension).

Reclassifications are frequent in several situations: a salesperson is rotated through stores, a store

changes of status, a product is recategorized, a player changes its team, a team changes its division,

a hurricane moves from one region or city to another.

A few works deal with reclassifications in DW dimensions. In Chamoni [1999], Pedersen [2001a],

and Malinowski [2008], valid time intervals are used to keep track of reclassifications. In

Mendelzon [2000], a multidimensional model supporting structural and data changes in dimensions,

and a temporal multidimensional query language called TOLAP are proposed. This approach is

extended later [Vaisman 2004] by introducing TSOLAP, an OLAP server supporting dimension

updates. One aspect that is common to all these works is that they use only one temporal unit for

keeping track of evolving associations of members in each dimension. This prevents the accurate

representation of reclassifications that can occur with different temporal units. For example,

salespersons can be hired by stores for periods of days, whereas stores can change of status annually

or biannually. In order to deal with this situation, we extend a formal temporal multidimensional

model.

The rest of the chapter is organized as follows. In Section 2.2, we present our formal temporal

multidimensional model and in Section 2.3, we end the chapter.

2.2 Temporal multidimensional model

Our model is based on the work of Mendelzon [2000] that, in turn, was built on the work of

Cabibbo [1997]. In the following, we represent the set of natural numbers including zero with ℕ0

and the set of natural numbers not including zero with ℕ.

 31

2.2.1 Dimensions

A dimension schema is a 5-tuple (D, L, ≼, All, ⊥) where:

i) D is the name of the dimension schema,

ii) L is a set of levels; each level l L has a name, Lname, and is associated with a set of members

(values), i.e., a domain, denoted by dom(l),

iii) ≼ is a partial order in the set L; we denote ≼' as the transitive reduction of ≼. Let l1, l2 L; l1 ≼

l2 means that l1 rolls up to l2,

iv) All L is the top level of ≼, i.e., l L, l ≼ All; dom(All) = {all}, and

v) ⊥ L is the bottom level of ≼, i.e., l L, ⊥ ≼ l.

Example 2.1. Figure 2.1 presents the dimension schema (SALESPERSON, {Salesperson, Sex,

Store, All}, ≼, All, Salesperson), in which ≼' = {(Salesperson, Sex), (Salesperson, Store), (Sex, All),

(Store, All)}. A member of the Salesperson level may include attributes such as salesperson name,

date of birth, and salary.

Figure 2.1. The SALESPERSON dimension schema.

2.2.2 Handling time

We consider time as discrete, i.e., a point in the timeline that corresponds to a positive integer

[Mendelzon 2000]. A positive integer represents an instance of a temporal unit, e.g., an hour, a day,

a month. For clarity, we will write ‘day 1’ (or an equivalent value such as ‘2009-Jan-01’) instead of

just ‘1’. In addition, I = [i, j], i, j ℕ, i j; represents an interval that corresponds to a set of

contiguous integers: {k | k ℕ AND i k j}. A variety of functions can be applied to intervals

[Allen 1983]. For example, Start(I) and End(I) return the first and the last positive integer of an

interval I, respectively.

Sex Store

All

Salesperson

 32

There is a finer than relation among temporal units. For example, each day is included in a specific

month. Let 1 and 2 be temporal units, if 1 is finer than 2, we write 1 ↝ 2. Note that the

temporal units can be used to define a TIME dimension schema where they play the role of levels

and the finer than relation corresponds to the rolls up relation.

Example 2.2. Consider the temporal units Day, Week, and Month. Day ↝ Day, Day ↝ Week, Day

↝ Month. For instance, the day 2009-Jan-11, is included in the month 2009-Jan. On the other hand,

Week is not finer than Month, and Month is not finer than Week, i.e., some temporal units are

incomparable with regard to the finer than relation.

2.2.3 Adding time to dimensions

We add time to other dimensions (other than the TIME dimension) in two ways. The first one is

timestamping each member in a particular level of a dimension with its valid time, in order to

capture its lifespan. The second way is timestamping the association between members with their

valid time, in order to capture the periods of their associations.

Consider a dimension schema (D, L, ≼, All, ⊥). A pair of levels (l1, l2) ≼', l2 ≠ All, can be

associated with a temporal unit , that defines the Temporal Reclassification Granularity (TRG)

between l1 and l2. If so, we say that the pair (l1, l2) is temporal. Note that in Mendelzon’s model

[2000], unlike in ours, a unique TRG is defined for the whole dimension.

Example 2.3. Consider the dimension schema of Example 2.1. In real life, a salesperson is assigned

to a store for a period of days. Therefore, we associate a TRG = Day with the pair (Salesperson,

Store) to track the associations between salespersons and stores, as is shown in Figure 2.2.

Figure 2.2. TRG between the Salesperson level and the Store level.

 = Day

Store

Salesperson

 33

A dimension schema instance is a 2-tuple (D, RF) where D is a dimension schema, and RF is a set

of rollup functions. Let L be the set of levels belonging to D; l1, l2 L, and ≼ the partial order on L

then:

i) for each temporal pair (l1, l2) ≼' with TRG , there exists a rollup function RUP_l1_l2: dom(l1)

x dom() → dom(l2), and

ii) for each non-temporal pair (l1, l2) ≼', there exists a rollup function RUP_l1_l2: dom(l1) →

dom(l2).

Note that RUP_l1_l2 is a metaname, i.e., l1 and l2 refer to level names.

Example 2.4. Consider an instance of the dimension schema of Example 2.1. Suppose the

following domains: dom(Salesperson) = {sp1, sp2}, dom(Sex) = {Male, Female}, dom(Store) = {st1,

st2, st3}, dom(All) = {all}, and dom(Day) = ℕ. The rollup functions are shown in the right column

of Table 2.1. For example, RUP_Salesperson_Store (sp1, day 2) = st1, and RUP_

Salesperson_Sex(sp1) = Male.

Table 2.1. Examples of rollup functions for a SALESPERSON dimension schema instance.

Pair of ordered levels Rollup function
(Salesperson, Sex) {(sp1, Male), (sp2, Female)}
(Salesperson, Store) {((sp1, day 1), st1), ((sp2, day 1), st2),

 ((sp1, day 2), st1), ((sp2, day 2), st2), ...,
 ((sp1, day 46), st2), ((p2, day 46), st2), ...}

(Sex, All) {(Male, all), (Female, all)}
(Store, All) {(st1, all), (st2, all), (st3, all)}

2.2.4 Dimensions constraints

Summarizability is a desirable property in a multidimensional model. Summarizability refers to the

correct aggregation of measures in higher levels considering existing aggregations in lower levels

[Malinowski 2008]. To guarantee summarizability, dimension hierarchies must meet disjointness

and completeness conditions [Lenz 1997]. Informally, disjointness states that a member of a level

can only be associated with a member of a higher level (a member can only have one ancestor

member), and completeness states that in a hierarchy, each member of a level must be associated

with a member of its immediate parent level.

 34

In order to guarantee the disjointness condition in our model, we enforce the following conditions.

Let l1, l2, l3, …, ln be levels of a dimension schema, n > 1, where l1 ≼' l2 ≼' l3 … ≼' ln. Let U ≠ be

the set of TRGs along the path l1 ≼' l2 ≼' l3 … ≼' ln; then, the mapping from l1 to ln with an

arbitrary temporal granularity is possible if ’ U then ↝ ’. If U = then the mapping

from l1 to ln is possible because all the mappings along the path l1 ≼' l2 ≼' l3 … ≼' ln are non-

temporal.

Example 2.5. Consider Figure 2.3. Suppose that dom(Salesperson) and dom(Store) are as in

Example 2.4, dom(Status) = {A, B}, and dom(1) = dom(2) = ℕ. A mapping from Salesperson to

Status with = Day is possible because U = {Day, Semester}, Day ↝ Day, and Day ↝ Semester.

This mapping is shown in the last row of Table 2.2. For example, if salesperson sp1 was in the store

st1 on day 1, and st1 was in status A in semester 1; then, sp1 was in status A on day 1 because day 1

belongs to semester 1. On the other hand, a mapping from Salesperson to Store with = Month is

impossible because U = {Day} and Month is not finer than Day. It means that a salesperson could

be associated with several stores during a month.

Figure 2.3. TRGs among Salesperson, Store, and Status levels.

Table 2.2. Mapping example.

Pair of ordered levels Rollup function
(Salesperson, Store) {((sp1, day 1), st1), ((sp2, day 1), st2),

 ((sp1, day 2), st1), ((sp2, day 2), st2), …}
(Store, Status) {((st1, semester 1), A), ((st2, semester 1), B),

 ((st1, semester 2), A), ((st2, semester 2), A), ...}
(Salesperson, Status) {((sp1, day 1), A), ((sp2, day 1), B),

 ((sp1, day 2), A), ((sp2, day 2), B), ...}

With regard to the completeness condition, let us consider, e.g., the relationship between a

salesperson and a store. There exist periods when a salesperson is not hired by any store. In order to

Status

1 = Day

2 = Semester

Store

Salesperson

 35

guarantee completeness, we adopt Jensen’s technique [2004]. The essential idea is to introduce

“dummy” parent values to member levels with no parents, e.g., a store value “No_store”.

There is a third necessary condition for summarizability, but this depends on the correct use of

measures and aggregation functions [Lenz 1997]; therefore, it will not be discussed here. In addition

to summarizability conditions, we adopt Mendelzon’s consistency condition [2000], i.e., if there are

different paths from one level to another, composing the rollup functions along the different paths

must produce the same function.

2.2.5 Facts

A fact represents a subject of decision-oriented analysis [Torlone 2003]. A fact typically includes

attributes called measures, i.e., indicators to evaluate specific activities of an organization

[Malinowski 2008]. Measures can be aggregated along the dimensional levels to facilitate data

analysis. Formally, a fact schema is a 3-tuple (F, LF, M) where:

i) F is the name of the fact schema,

ii) LF = {l1, …, ln} is a set of levels. Each li LF is the bottom level (⊥) in a dimension schema, and

iii) M = {m1, …, mm} is a set of measures (note that in Mendelzon’s model only one measure is

considered). Each measure mi is associated with a domain dom(mi).

Example 2.6. Consider the fact schema (SALES, {Salesperson, Product, Day}, {Units_sold,

Sale_value}), see Figure 2.4. To represent our multidimensional model, we use essential notations

from [Malinowski 2008], see Figure 2.5, based on the entity-relationship graphical notations;

however, we add the representation for TRGs.

 36

Figure 2.4. A temporal multidimensional model for sales.

Figure 2.5. Notations to represent our multidimensional model: a) level, b) hierarchy, c) cardinalities, and d)

fact relationship. Source [Malinowski 2008].

A fact instance of a fact schema (F, LF, M), LF = {l1, …, ln}, M = {m1, …, mm} is a 2-tuple (lF, m)

where lF = {value(l1), …, value(ln)} is a set of values where value(li) dom(li); each value(li) is a

member of a bottom level in a dimension schema instance, and m = {value(m1), …, value(mm)} is a

set of values where value(mi) dom(mi). A fact table is a set of fact instances.

Level
name2

(1, N) One-to-many

(0, N) Zero-to-many

(1, 1) One-to-one

(0, 1) Zero-to-one

b)

d) c)

Level
name

a)

Level
name1

Measures

Fact name

Product

Units_sold
Sale_value

Category

Sales Day

Month

Year

SALESPERSON
Dimension

 = Day

TIME
Dimension

Status

 = Day

 = Semester

Store

Salesperson

All All
All

PRODUCT
Dimension

 37

Example 2.7. Suppose the following domains: dom(Salesperson) = {sp1, sp2}, dom(Product) =

{pd1, pd2}, dom(Day) = ℕ, and dom(Units_sold) = dom(Sale_value) = ℕ. A fact table of the fact

schema SALES of Example 2.6 is shown in Table 2.3, the first fact instance that appears there is

({sp1, pd1, day 1}, {2, 2000}).

Table 2.3. A fact table of the fact schema SALES.

Bottom levels Measures

Salesperson Product Day Units_sold Sale_value
sp1 pd1 1 2 2000
sp1 pd1 8 1 1000
sp1 pd2 8 1 500
sp1 pd2 28 1 500
sp2 pd1 1 3 3000

2.2.6 Fact constraints

Consider the multidimensional model for sales of Figure 2.4. Suppose the facts record weekly sales

instead daily ones; therefore, we could find, e.g., weekly units sold by salespersons, but we could

not find weekly units sold by stores, because the TRG of the associations between salespersons and

stores is Day. Let UD be the set of all TRGs in a dimension schema D; then, measures can be

aggregated in any level of D if ’ UD then F ↝ ’, where F is the bottom level of the TIME

dimension associated with the fact schema F.

Example 2.8. In the temporal multidimensional model for sales of Figure 2.4, the set of TRGs in

the SALESPERSON dimension is USALESPERSON = {Day, Semester} and SALES = Day. Day ↝ Day

and Day ↝ Semester; then, measures can be aggregated in any level of the SALESPERSON

dimension.

2.3 Conclusion

Motivated by the reclassifications of members of dimension levels, we extended a formal temporal

multidimensional model in order to allow different temporal units in a dimension, i.e., making it a

temporal multidimensional model supporting different time granularities for associations between

members of different pairs of levels in a dimension. Our extension helps to represent some

situations from the real world with more accuracy. We also provide rules to guarantee disjointness

 38

and completeness conditions in our model. These conditions are required in order to guarantee

correct aggregation of measures through dimensional hierarchies, i.e., summarizability.

As a future work, we plan to extend our model in order to support many-to-many relationships

between dimension values, i.e., relaxing the disjointness condition. For example, a product may

belong to several categories simultaneously.

Based on our model, in Chapter 6 we formalize the notion of season, a notion that leads to

interesting queries (season queries), useful for decision-makers in several situations and application

domains.

 39

Chapter 3: Supporting the Change in the Degree of Containment in a
Multidimensional Model

3.1 Introduction

In Chapter 2 we proposed a formal multigranular temporal multidimensional model in order to deal

with a type of dimension change, the reclassification. In this chapter, we focus on another type of

dimension change, the change in the degree of containment.

As we explained in Chapter 1, the hierarchical organization between the dimension levels captures

their full containment relationship. For example, consider a LOCATION dimension with Highway,

Department, Country, and All levels, see Section 3.2. A department is fully contained in a country;

however, a highway is not necessarily fully contained in a department. In order to manage this

situation, Jensen [2004] proposed a generalization of full containment, the partial containment.

The partial containment allows us to represent situations in which a dimension value is not fully

contained in another. For example, a highway can be contained only 0.2 (20%) in a department.

However, the model of Jensen [2004] does not support a possible change in the degree (percentage)

of containment between two dimension values. For example, at a time ti the degree of containment

of a highway in a department is 0.2, but at a time ti+1, this degree may change due to construction or

destruction of highway sections.

Other examples where evolution of the degree of containment can arise are the containment of a

jungle in a country, the containment of a group of animals in a geographic region, the containment

of a tumour in an organ. In order to support this type of change, we extend the model of Jensen

[2004]. To the best of our knowledge, this aspect has not yet been examined in previous works. Our

extension is incorporated into a multidimensional query language as well, which enables what-if

analysis (hypothetical queries), a very important decision support process as stated in Balmin

[2000].

This chapter is organized as follows. In Section 3.2, we present a motivating example. In Section

3.3, we present Jensen’s multidimensional model that supports partial containment. Next, in Section

3.4, we introduce the extension to support the change in the degree of containment and in Section

3.5, we incorporated our extension into a multidimensional query language, give examples, and

 40

present some basic experiments. Finally, in Section 3.6, we draw conclusions and outline future

work.

3.2 Motivating example

Consider the road infrastructure of a country composed of highways that run through its

departments (states). Figure 3.1 illustrates a situation where three highways (hw1, hw2, and hw3) run

through three departments (dep1, dep2, and dep3).

Figure 3.1. Road infrastructure of a country.

The traffic authorities are interested in analyzing such things as car accidents, e.g., to identify what

highways have a higher accident rate in order to improve their control, change its route, or take

other measures to reduce accidents. In this scenario, accidents are the phenomena of interest, i.e.,

they are the facts, that occur in one place and at a certain date (geographical and temporal

dimensions). Figure 3.2 presents a multidimensional model to represent this situation (the notation

of Jensen is used [Jensen 2004] to indicate full and partial containment) and Table 3.1 shows a

sample data of the fact table of accidents. Note that each fact instance corresponds to the set of

accidents that occurred in a highway at a particular date.

hw1

hw2

hw3

dep1 dep2

dep3

 41

Figure 3.2. Multidimensional model for the analysis of accidents.

Table 3.1. Sample data of the fact table of accidents.

Bottom levels Measures

Day Highway #Accidents #Casualties
…

2008-Jan-01 hw1 2 5
2008-Jan-01 hw2 1 2
2008-Jan-02 hw1 3 9
2008-Jan-02 hw2 1 2
2008-Jan-03 hw3 1 3
2008-Jan-04 hw2 2 4

…
2008-Jan-20 hw2 3 3

…

Suppose that the degree of containment of the highway hw2 in the department dep2 is 0.2 and in the

department dep3 is 0.8. Consider the query: What is the total number of accidents that have occurred

in the department dep2?

From Figure 3.1 it is noted that the facts associated with the highway hw3 contribute to the total

requested since that highway is fully contained in the department dep2; however, with regard to the

facts associated with the highway hw2 there is not such certainty.

Partial
containment

Full
containment

TIME
dimension

LOCATION
dimension

Highway

Department

Country

All All

Day

Month

Year

#Accidents
#Casualties

Accidents

 42

Nevertheless, it is possible to give an approximate answer to this query, see Table 3.2, if we

consider the degree of containment of a highway in a department and the data are distributed

proportionately.

Table 3.2. Calculation of the total number of accidents in the department dep2 (a degree of containment equal

to 0.2 of the highway hw2 in the department dep2 is considered).

Highway Total number
of accidents

Degree of containment
in the department

dep2

Estimated number
of accidents in the
department dep2

hw1 5 0.2 5 * 0.2 = 1
hw2 7 0.2 7 * 0.2 = 1.4
hw3 1 1 1 * 1 = 1

Total 3.4

Suppose now that the degree of containment of the highway hw2 in the departments dep2 and dep3

changes as shown in Figure 3.3. The degree of containment of the highway hw2 in both departments

is now 0.5 due to the addition of a highway section.

Figure 3.3. Change in the partial containment: growth of the highway hw2.

Consider again the query raised and suppose that the new highway section will be available for

vehicle traffic from 2008-Jan-15. Note that we must keep the evolution of changes in the degrees of

containment of the highways in the departments, in order to obtain consistent results over time.

Otherwise, all the facts prior to 2008-Jan-15 associated with the highway hw2, would give the

impression that they occurred when the degree of containment of the highway hw2 in both

departments is 0.5.

Table 3.3 shows the results that we obtain by applying the current degree of containment to all the

data, i.e., without considering the degree of containment when the facts occurred (5.5 accidents).

Conversely, the results of Table 3.4 are consistent with regard to the degree of containment when

the facts occurred (4.3 accidents).

hw2

dep2

dep3

dep2

hw2 dep3

 43

Table 3.3. Calculation of the total number of accidents in the department dep2 (current degree of containment

of the highway hw2 in the department dep2 is considered).

Highway Total number
of accidents

Degree of containment
in the department

dep2

Estimated number
of accidents in the
department dep2

hw1 5 0.2 5 * 0.2 = 1
hw2 7 0.5 7 * 0.5 = 3.5
hw3 1 1 1 * 1 = 1

Total 5.5

Table 3.4. Calculation of the total number of accidents in the department dep2 (the degree of containment
when the facts occurred is considered).

Highway Total number

of accidents
Degree of containment

in the department
dep2

Estimated number
of accidents in the
department dep2

hw1 5 0.2 5 * 0.2 = 1
hw2 4 0.2 4 * 0.2 = 0.8
hw2 3 0.5 3 * 0.5 = 1.5
hw3 1 1 1 * 1 = 1

Total 4.3

In the model of Jensen [2004] the history of such changes is not preserved. In Section 3.4, we

present the corresponding extension in order to support this situation.

3.3 Multidimensional model with partial containment

We present next the essential concepts of the multidimensional model of Jensen [2004], which

supports partial containment.

3.3.1 Multidimensional schema

A multidimensional schema is a 2-tuple S = (F, DT), where F is a fact type and DT = {Di, i = 1,…,

n} is a set of dimension types. A dimension type D is a 4-tuple (LTD, ≼, All, ⊥), where LTD = {Lti, i

= 1,…, k} is a set of level types. ≼ is a partial order on the set LTD. All is the top element of the

partial order and ⊥ represents the bottom element of the partial order. All represents the highest

grouping level of the dimensional values and ⊥ the lowest. The domain of All is a single value:

dom(All) = {all}.

Example 3.1. Let Accidents = {A, DT} be a multidimensional schema, where A is a fact type for

representing accidents and DT = {TIME, LOCATION}:

 44

 TIME = (LTTIME, ≼, All, ⊥), LTTIME = {Day, Month, Year, All}, and ⊥ = Day. The

corresponding partial order is shown in Figure 3.4 (a).

 LOCATION = (LTLOCATION, ≼, All, ⊥), LTLOCATION = {Highway, Department, Country, All},

and ⊥ = Highway. The corresponding partial order is shown in Figure 3.4 (b).

Note that to represent a partial order, its transitive reduction is used (Hasse diagram [Freese 2004]).

Figure 3.4. Dimension types: a) TIME and b) LOCATION.

3.3.2 Dimension instance

Given a multidimensional schema S = (F, DT), a dimension instance d of dimension type D DT,

is a 2-tuple d = (Ld, §), where Ld = {levi, i = 1,…, k} is a set of levels. Each level lev is of level type

Lt LTD, i.e., a level lev is a set of values of level type Lt. § is a partial order on i levi (union of all

the values of the levels of a dimension instance). For simplicity, we henceforth write Dim instead of

i levi.

Example 3.2. Let time be an instance of the dimension type TIME and location an instance of the

dimension type LOCATION, see Example 3.1:

 time = {Ltime, §}, Ltime = {day, month, year, all_time}, where day is of level type Day, month is

of level type Month, year is of level type Year, and all_time is of level type All. day = {2007-

Jan-01, 2007-Jan-02,…, 2008-Dec-31}, month = {2007-Jan, 2007-Feb,…, 2008-Dec}, year =

{2007, 2008}, and all_time = {all}. The corresponding partial order is shown in Figure 3.5 (a).

 location = {Llocation, §}, Llocation = {highway, department, country, all_location}, where highway

is of level type Highway, department is of level type Department, country is of level type

Country, and all_location is of level type All. highway = {hw1, hw2, hw3}, department = {dep1,

Day

a) b)

Month

Year

All

Department

Country

Highway

All

 45

dep2, dep3}, country = {ct1}, and all_location = {all}. The corresponding partial order is shown

in Figure 3.5 (b).

Figure 3.5. Dimension instances: a) time and b) location.

3.3.3 Degree of containment

Given two dimension values v1 Dim and v2 Dim, and a number g [0; 1], the notation v1 §g v2

means that v1 is contained in v2 at least in g * 100%. g is the degree of containment of v1 in v2. If g

= 1 means that v1 is fully contained in v2 and if g = 0 means that v1 may be contained in v2 (if

containment does exist, the value of the degree is unknown).

Jensen [2004] presents several transitivity rules to infer degrees of containment between dimension

values. In the following v3 Dim, p [0; 1), and q [0; 1).

i) Transitivity of full containment: if v1 §1 v2 and v2 §1 v3 then v1 §1 v3,

ii) Transitivity between partial and full containment: if v1 §p v2 and v2 §1 v3 then v1 §p v3,

iii) Transitivity between full and partial containment: if v1 §1 v2 and v2 §p v3 then v1 §0 v3, and

iv) Transitivity of partial containment: if v1 §p v2 and v2 §q v3 then v1 §0 v3.

2007-Jan-01 2007-Feb-01 2008-Dec-31

2007-Jan 2007-Feb 2008-Dec

2007 2008

all

…

…

hw1

all

dep1

ct1

hw2

dep2

hw3

dep3

a)

b)

…

 46

For example, the rule iii) states that if v1 is fully contained in v2 and v2 is contained in v3 in p *

100% (p < 1), then it can only be inferred that v1 may be contained in v3 (v1 §0 v3).

3.3.4 Fact-dimension relation

A fact-dimension relation r is defined as r f Dim, where f is a set of facts of fact type F, see

Subsection 3.3.1. Each fact of f must be related to at least one value of each dimension. For

simplicity, we assume that each fact is related to only a value of each dimension and the

corresponding dimension value belongs to the bottom level of the dimension.

Example 3.3. Consider again Example 3.1. Let accidents = {ac1, ac2, ac3, ac4, ac5} be a set of facts

of fact type A. Let the fact-dimension relations be:

 r1 = {(ac1, 2008-Jan-01), (ac2, 2008-Jan-01), (ac3, 2008-Jan-02), (ac4, 2008-Jan-02), (ac5, 2008-

Jan-03)}.

 r2 = {(ac1, hw1), (ac2, hw2), (ac3, hw1), (ac4, hw2), (ac5, hw3)}.

The relations r1 and r2 associate the set of facts accidents with the values of dimension instance time

as well as with the dimension instance location from Example 3.2, respectively.

3.3.5 Fact characterization

The term fact characterization is defined from a fact-dimension relation r. It is said that a fact is

characterized by a dimension value, if the fact is associated directly or indirectly (by transitivity in

the partial order § of the dimension values) with such value, i.e., a fact f1 f is characterized by a

value v1 Dim, written f1 v1, if: (f1, v1) r or if there exists a value v2 Dim such that (f1, v2)

 r and v2 § v1.

 Example 3.4. In Figure 3.6: ac1 hw1, ac1 dep2, ac1 dep3, ac1 ct1, ac5 hw3, ac5 dep2,

and ac5 ct1.

Figure 3.6. Facts ac1 and ac5 associated with dimension values.

hw1

dep2 dep3

0.2 0.8

ac1

ct1
1 1

hw3

dep2

1

ac5

ct1
1

 47

3.3.6 Multidimensional object

After specifying the dimensions, the fact-dimension relation, and the fact characterization; the

Multidimensional Object (MO) is then defined. Informally, a MO is a cube [OLAP Council 2009],

i.e., a group of cells (that contain the measures) associated with a set of dimension values. Formally,

a MO is a 4-tuple MO = (S, f, DI, R), where S = (F, DT) is a multidimensional schema, f is a set of

facts of fact type F, DI is a set of dimension instances each one of dimension type D DT, and R is

a set of fact-dimension relations.

Example 3.5. Let AccidentsCube = (Accidents, accidents, {time, location}, {r1, r2}) be a MO,

where Accidents is the multidimensional schema of Example 3.1, accidents the set of facts of

Example 3.3, {time, location} is the set formed by the dimension instances from Example 3.2, and

{r1, r2} is the set formed by the fact-dimension relations from Example 3.3.

3.4 Support of the change in the degree of containment

The degree of containment between two dimension values may change over time. For example, in

Figure 3.3 is shown the change in the degree of containment between a) the highway hw2 and the

department dep2 and b) the highway hw2 and the department dep3.

In order to support the change in the degree of containment, the following extension to the model of

the previous section is proposed. Let (LTD, ≼, All, ⊥,) be a dimension type, where is a temporal

unit (hours, days, months, years, among others). defines the temporal accuracy required

(granularity) for the application to record the degree of containment between the dimension values.

Consider a pair of level types (Lt1, Lt2) LTD. Let d = (Ld, §) be a dimension instance of dimension

type D. Let the level lev1 Ld be of level type Lt1 and the level lev2 Ld be of level type Lt2. For

the pair (lev1, lev2) a DC (Degree of Containment) function is defined with signature: lev1 lev2

dom() [0;1]. The DC function returns the degree of containment at a given time of a value of

lev1 with regard to a value of lev2.

Example 3.6. Let LOCATION = (LTLOCATION, ≼, All, ⊥,) be a dimension type, where = Day.

Consider the pair of level types (Highway, Department) from Example 3.1. Let location = {Llocation,

§} be an instance of the dimension type LOCATION, Llocation = {highway, department, country,

all_location}, highway is of level type Highway and department is of level type Department. For

the pair (highway, department) a DC function is defined; some of their values are shown in Table

 48

3.5 and are illustrated in Figure 3.7. For example, DC(hw2, dep3, 2008-Jan-01) = 0.8 and DC(hw2,

dep3, 2008-Jan-15) = 0.5.

Table 3.5. Sample data of the DC function for (highway, department).

hw highway, dep department, and t dom(Day).

hw dep t DC
…

hw2 dep2 2008-Jan-01 0.2
hw2 dep3 2008-Jan-01 0.8
hw2 dep2 2008-Jan-02 0.2
hw2 dep3 2008-Jan-02 0.8

…
hw2 dep2 2008-Jan-15 0.5
hw2 dep3 2008-Jan-15 0.5

…

Figure 3.7. Degree of containment of the highway hw2 in the departments dep2 and dep3: a) between 2008-Jan-

01 and 2008-Jan-14 and b) from 2008-Jan-15.

For calculating the degree of containment between two dimension values that are not adjacent in the

hierarchy, the rules of transitivity from the Subsection 3.3.3 are applied.

Example 3.7. Consider Figure 3.1 and suppose that the DC(hw1, dep1, 2008-Jan-31) = 0.8, see

Figure 3.8 (a). Suppose that from 2008-Feb-01, the section of the highway hw1 in the department

dep2 is eliminated, thus DC(hw1, dep1, 2008-Feb-01) = 1, see Figure 3.8 (b). Therefore, by applying

the transitivity rules, it is obtained that DC(hw1, ct1, 2008-Jan-31) = 0.8 and DC(hw1, ct1, 2008-Feb-

01) = 1.

Figure 3.8. Degree of containment of the highway hw1 in the department dep1: a) in 2008-Jan-31 and b) in

2008-Feb-01.

hw1

dep1

0.8

ct1
1

a) b)

hw1

dep1

1

ct1
1

hw2

dep2 dep3

0.2 0.8
hw2

dep2 dep3

0.5 0.5

a) b)

 49

3.5 Integration into a multidimensional language

This section illustrates how our proposed extension can be incorporated into a multidimensional

query language. We present also some basic experiments related to accidents in Mexican highways.

3.5.1 Language

Although MDX (Multidimensional Expressions) [Whitehorn 2005] is a language which in recent

years has become a de facto standard to query multidimensional data, we use the multidimensional

query language proposed by Datta [1999], because of its similarity to the relational algebra. We use

the operators of selection () and aggregation (). We give next a brief description of these

operators. For details, refer to Datta [1999].

i) : allows us to select values from dimensions.

Notation: P(Cube1) = Cube2, where P is a predicate, and

ii) : applies aggregate functions to measures with one or more dimension levels specified as

grouping attributes.

Notation: [AL, GDL](Cube1) = Cube2. AL is a list of elements gi(mi) where gi is an aggregate function

applied to measure mi, and GDL is a set of grouping dimensions levels.

For all the queries, the AccidentsCube cube from the Example 3.5 is used.

Query 3.1. What is the total number of accidents that have occurred in the department dep2?

 [SUM(#Accidents * DC(highway, 'dep2', day))](AccidentsCube)

That is, all the facts from the AccidentsCube cube are selected. Then for each fact, the degree of

containment of the corresponding highway in the department dep2 is found, and this value is then

multiplied by the number of accidents. Next, the total requested is obtained using the aggregate

function SUM. The same query formulated in an SQL-like way is

SELECT SUM(#Accidents * DC(highway, 'dep2', day))

FROM AccidentsCube

Note that to calculate the degree of containment, the date (day) associated with the fact is used, i.e.,

the degree of containment when the facts occurred is used. However, it is possible to formulate

 50

hypothetical queries in order to analyze past behaviors and make predictions, as exemplified in the

following queries.

Query 3.2. What would have been the total number of accidents occurred in the department dep2 if

the existing degree of containment in the highways in such department in 2007-Jan-01 were

considered?

 [SUM(#Accidents * DC(highway, 'dep2', '2007-Jan-01'))]((AccidentsCube))

In this query, all the facts from the AccidentsCube cube are considered, e.g., facts from 2007 and

from 2008, but the degree of containment corresponding to 2007-Jan-01 is used.

Query 3.3. What would have been the total number of accidents occurred in the department dep2 in

2007 given the current degree of containment of highways in that department? The current date is

represented by now.

 [SUM(#Accidents * DC(highway, 'dep2', now))](day > '2007-Jan-01' AND day < '2007-Dec-31'(AccidentsCube))

In this query, only the facts from the AccidentsCube cube from 2007 are selected, but the degree of

containment corresponding to the current date is used.

3.5.2 Some basic experiments

In order to make some basic experiments, we built our multidimensional model for the analysis of

accidents in a relational way using Oracle. We built the DC function using a many-to-many

relationship between highway and department and a stand-alone Oracle function that was invoked

from SQL queries.

We took data about accidents, highways, and departments (states) from Instituto Mexicano del

Transporte [IMT 2009]. In Figure 3.9 we show the configuration of some highways in 2002 and in

2005. In Table 3.6 we present data about the number of accidents in these highways and in Table

3.7 we show the degree of containment of each highway in each department. Finally, in Table 3.8

we present the corresponding calculations of the total number of accidents in each department:

i) applying the corresponding degree of containment when the accidents occurred,

ii) applying to all the accidents, the degree of containment of the highways in 2002, and

iii) applying to all the accidents, the degree of containment of the highways in 2005.

 51

For example, the calculations for highway M-002D and department Baja California in Table 3.8 are

made as follows. Column i) 84 * 0.33 + 206 * 0.26 = 81, column ii) (84 + 206) * 0.33 = 96, and

column iii) (84 + 206) * 0.26 = 75.

Figure 3.9. Configuration of highways: a) highway M-002D in 2002, b) highway M-002D in 2005, c) highway

M-115 in 2002, d) highway M-115 in 2005, e) highway M-185 in 2002, and f) highway M-185 in 2005.

Table 3.6. Total number of accidents in 2002 and 2005.

Highway Year #Accidents
M-002D 2002 84
M-002D 2005 206
M-115 2002 263
M-115 2005 269
M-185 2002 26
M-185 2005 45

Table 3.7. Degree of containment of each highway in each department in 2002 and 2005.

Baja
Calif.

Sonora

Mexico

Morelos

Oaxaca

Veracruz

Sonora
Baja
Calif.

Mexico

Morelos

Oaxaca

Veracruz

a) b)

c) d)

e) f)

M-002D M-002D

M-115

M-185 M-185

M-115

 52

Highway Year Department Length

(km)
Degree of

containment
M-002D 2002 Baja Calif. 46.46 0.33
M-002D 2002 Sonora 92.94 0.67
M-002D 2005 Baja Calif. 46.46 0.26
M-002D 2005 Sonora 134.84 0.74
M-115 2002 Mexico 50.21 0.38
M-115 2002 Morelos 80.69 0.62
M-115 2005 Mexico 50.21 0.31
M-115 2005 Morelos 110.24 0.69
M-185 2002 Oaxaca 168.49 0.71
M-185 2002 Veracruz 68.11 0.29
M-185 2005 Oaxaca 168.49 0.67
M-185 2005 Veracruz 84.21 0.33

Table 3.8. Calculations of the total number of accidents: i) using the degree of containment when the accidents

occurred, ii) using the degree of containment in 2002, and iii) using the degree of containment in 2005.

Highway Department i) ii) iii)
M-002D Baja Calif. 81 96 75
M-002D Sonora 209 194 215
M-115 Mexico 183 202 165
M-115 Morelos 349 330 367
M-185 Oaxaca 49 50 48
M-185 Veracruz 22 21 23

3.6 Conclusions and future work

In this chapter, we adopted a multidimensional model that supports partial containment. This model

was extended in order to allow the possible change in the degree of containment between dimension

values. The extension was also incorporated into a multidimensional query language. This enables

the formulation of queries that are consistent with time. Furthermore, it allows the formulation of

hypothetical queries (What if? What would have happened if?), which can help decision-makers.

As future work, we plan to incorporate our proposal into a platform such as Pentaho [2009] or

Microsoft Analysis Server [Microsoft 2009]. However, since these platforms are oriented to

multidimensional models that support full containment, the introduction of our extension poses

interesting challenges. On the other hand, from the point of view of language, both platforms

support MDX. However, since MDX is also oriented to the management of full containment, the

incorporation of our proposal into this language poses challenges as well.

Finally, more extensive experiments and analysis of results are needed in order to try to identify

possible behaviors. It would be interesting to analyze other domains where partial containment

 53

arises, e.g., facts as crimes and fish catches, associated with regions that are located among several

countries or departments (states).

 54

Chapter 4: Extensions to the Map Cube Operator

4.1 Introduction

A GIS [Tomlin 1990], [Longley 2005] can integrate, store, edit, analyze, share, and display

geographically referenced information. Although a GIS can be used for managing geographic data

for decision support, a GIS usually works with geographic data separately from other business data

[Pestana 2005] and it offers minimal analytical capabilities for non-geographic data [Ferri 2000],

[Yin 2000], [Bédard 2001], [Rivest 2001].

On-Line Analytical Processing (OLAP) [Codd 1993] allows querying, browsing, and summarizing

information in an efficient, interactive, and dynamic way. OLAP provides an aggregation approach

to analyze large amounts of detailed data (usually represented in an alphanumeric format) typically

over a DW. Thus, while OLAP offers powerful analytic capabilities, GIS offers spatial

functionality.

We believe that OLAP-GIS integration is very promising. Other authors [Yin 2000], [Scotch 2005],

[Cely 2006] also recognize the need for integrating these technologies. From an architectural

functional point of view, we classify OLAP-GIS works into two groups: middleware and DW

proposals. Middleware proposals [Ferri 2000], [Yin 2000], [Kouba 2000], [Miksovský 2001],

[Ferreira 2001], [Da Silva 2004], [Scotch 2005]; make it possible to query geographic and business

data together without changing the physical organization of data in both environments [Pourabbas

2005]. DW extension proposals [Rivest 2001], [Han 1998], [Pedersen 2001b], [Rao 2003], [Fidalgo

2004], [Sampaio 2006], [Jensen 2004], [Bimonte 2005], [Timko 2005], [Damiani 2006],

[Malinowski 2008]; store and manage geographic data inside the DW. It means that the DW should

offer spatial capabilities, such as a spatial storage engine, robust spatial data access, and a set of

spatial functions in order to facilitate the spatial multidimensional analysis and to mimic GIS

capabilities.

An OLAP-GIS integration provides business analysts with the opportunity to see strategic business

data from a geographic point of view in a friendly and intuitive way. This can contribute to the

detection of implicit and valuable spatial associations and patterns that otherwise would be very

difficult to recognize. Thus, business analysts could see geographic data from different perspectives

and various hierarchical levels. For example, in a crime scenario, police analysts could i) identify

the places in each neighborhood where crimes concentrate, year by year, by type of crime, and ii)

 55

perform a spatial roll-up operation to view crime data at a more aggregated level, e.g., going from

the Neighborhood level to the City level.

Other scenarios where an OLAP-GIS integration can be useful are:

 Health. To identify the zones affected by different types of diseases. This could indicate

points to relocate health centers or create new ones.

 Agriculture. To find the cultivated regions for different types of crops. This could indicate,

e.g., land parcels where some type of crop should be replaced in order to improve irrigation

and fumigation controls.

 Traffic control. To find the route map in each neighborhood by type of transport (buses,

trucks, trains). This could indicate zones where more routes are needed or zones with an

excess of routes.

The map cube operator [Shekhar 2001] can accomplish tasks such as the previous ones. Map cube

supports spatial aggregation in a spatial multidimensional database and enables visualization of

information through maps. For example, in the crime scenario, we can use the map cube operator to

aggregate the points where crimes were committed, and show the resulting maps: grouping of crime

points by neighborhood and type of crime, by neighborhood regardless of type of crime, by type of

crime regardless of neighborhood, and for a whole city, regardless of the neighborhood or type of

crime.

Unfortunately, map cube only supports spatial aggregation using geometric union function;

however, other spatial aggregate functions could be used. For example, in the crime scenario,

functions such as center of mass, convex hull, and area-of-influence polygons (Voronoi diagram)

could be appropriate to identify places where crimes concentrate.

In this chapter, we extend map cube in order to support spatial aggregate functions other than

geometric union. In addition, we extend map cube for supporting several aggregate functions

simultaneously and to overlay its results with maps. For example, in the crime scenario, we could

apply the map cube operator using center of mass and convex hull as aggregate functions, and

overlay its results with a map of hospitals and police stations. To the best of our knowledge, there

are no previous works that have extended the map cube operator this way.

The remainder of the chapter is organized as follows. In Section 4.2, we describe spatial DWs. In

Section 4.3, we present the map cube operator, point out some of its shortcomings and grammatical

 56

inconsistencies, and propose some improvements. In Section 4.4, we describe spatial aggregate

functions and in Section 4.5, we illustrate our proposal with a case study about crimes. In Section

4.6, we end the chapter and outline future work.

4.2 From a conventional DW to a spatial DW

In order to illustrate how spatiality can be useful for business analysts, consider a DW model for

crimes as shown in Figure 4.1. A sample data of the fact table Crimes is shown in Table 4.1. Each

fact corresponds to the set of crimes of a particular type that happened in a given neighborhood on a

specific date (day).

Figure 4.1. A conventional DW model for crimes.

Table 4.1. Crimes table.

Bottom levels Measures

Neighborhood Crime_type Day #Victims
East Garfield Park Assault 2008-Oct-01 5
East Garfield Park Vandalism 2008-Oct-01 3
East Garfield Park Assault 2008-Oct-02 7
Logan Square Vandalism 2008-Oct-01 2
Logan Square Burglary 2008-Oct-02 3

Now, consider the query “find the total number of victims in each neighborhood”. The results are

fifteen in East Garfield Park and five in Logan Square. Next, we add to our DW the geographic

extent (region) of each neighborhood, see Figure 4.2. Such spatiality enhancement allows us to

display the results of the previous query on a map, see Figure 4.2 (c).

Day Crimes

#Victims

Crime_type

Neighborhood

Month

Year

City

TIME
dimension

CRIME_TYPE
dimension

All

All

All

GEOGRAPHIC
dimension

 57

Spatiality can also be added to the facts and spatial measures can arise. For example, suppose the

points where crimes were committed are known, see Figure 4.2 (b). In Figure 4.2 (a) and Table 4.2

crime points (Crime_points) are handled as a spatial measure. Now, police analysts are enabled to

formulate a query such as: What was the total number of victims and the center of mass of crimes in

each neighborhood? The results are shown in Figure 4.2 (c). In the next section, we present and

extend map cube, an operator that provides a simple way to formulate this type of queries.

Figure 4.2. Adding a spatial measure: a) Crime_points measure, b) the points where crimes were committed,

and c) the total number of victims and the center of mass of crimes in each neighborhood.

Table 4.2. Crimes table with spatial measure Crime_points.

Bottom levels Measures
Neighborhood Crime_type Day #Victims Crime_points

East Garfield Park Assault 2008-Oct-01 5 {p1, p2, p3}
East Garfield Park Vandalism 2008-Oct-01 3 {p4, p5, p6}
East Garfield Park Assault 2008-Oct-02 7 {p7, p8, p9}
Logan Square Vandalism 2008-Oct-01 2 {p10, p11}
Logan Square Burglary 2008-Oct-02 3 {p12, p13, p14}

…

4.3 The map cube operator

4.3.1 Overview

The map cube operator was developed by Shekhar [2001], [Lu 2003] as a spatial extension of the

data cube operator [Gray 1997]. In turn, data cube is a generalization of the SQL GROUP BY

clause. Given n grouping columns, data cube generates subtotals for all the possible combinations

of these columns, i.e., 2n subtotals. Each combination is called a cuboid [Agarwal 1996]. For

example, consider Table 4.2; a data cube by Neighborhood and Crime_type columns generates

Logan
Square

East
Garfield
Park

 Crimes

a) b) c)

#Victims
Crime_points

p1

p4
p2

p3
p5
p6

p7
p8

p9

p10
p11

p12

p13 p14
5

15

 58

subtotals (e.g., the total number of #Victims) by (Neighborhood, Crime_type), (Neighborhood),

(Crime_type), and (All); i.e., the grand total.

On the other hand, map cube enables spatial aggregation, e.g., besides the sum of the number of

victims, if we had the geographic points where crimes were committed, these points could be

spatially aggregated. Map cube then associates a map with each cuboid generated by data cube and

integrates data and maps in a single view. The corresponding map cube sentence is shown in Table

4.3.
Table 4.3. Example of map cube sentence.

Map cube sentence Output

Base-Map Crimes_Map
Base-Table Crimes
Aggregate by SUM: #Victims
Reclassify by Neighborhood, Crime_type
Data cube dimension Neighborhood, Crime_type
Cartographic preference Thickness = 1, Color = Blue

- Cuboid (Neighborhood, Crime_type) with its
corresponding map.
- Cuboid (Neighborhood) with its corresponding
map.
- Cuboid (Crime_type) with its corresponding map.
- Cuboid (All) with its corresponding map.

Next we briefly describe the terms of this sentence: i) Base-Map represents the map where the

spatial information lies, ii) Base-Table specifies the fact table, iii) Aggregate by specifies the

column (measure) to be aggregated along with an aggregate function, iv) Reclassify by and Data

cube dimension specify the grouping columns (dimensions). For additional details about them refer

to [Shekhar 2001], and v) Cartographic preference specifies visualization parameters.

An implicit geometric union is performed over the spatial column Crime_points of the Crimes table.

This column is related to the Crimes_Map. Thus, in this example, a geometric union of

Crime_points is performed.

Unfortunately, after reviewing the map cube operator, we identified the following shortcomings,

that we overcome in Subsection 4.3.3.

 Map cube does not allow spatial aggregate functions other than geometric union. This

prevents the use of functions such as center of mass, convex hull, Voronoi diagram, and

intersection, among others, that can be useful in different domains, see Section 4.1.

 It is impossible to perform more than one spatial aggregation in a single map cube sentence.

 It is impossible to overlay maps with the map cube results.

The original map cube grammar [Shekhar 2001], written in Yacc [Levine 1995], is shown in Figure

4.3.

 59

Base-Map = <base-map name>
Base-Table = <base-table name>
 (Where <join attribute list>
 (And <join attribute list>)*)?
Aggregate by <aggregate list>
Reclassify by <attribute list>
Data cube dimension <attribute list>
Cartographic preference <carto attribute list>

<base-map name> <name> (, <name>)*
<base-table name> <name>
<aggregate list> <aggregate unit> (<operator> <aggregate unit>)?
<aggregate unit> <aggregate func> : <name>
<aggregate func> SUM | MAXN | MINN | COUNT | MEDIAN
<join attribute list> <name> <operator> <name>
<attribute list> <name>? | <name> (, <name>)*
<carto attribute list> <carto-attribute-value pair> (, <carto-attribute-value pair>)*
<carto-attribute-value pair> <carto-attribute> = <carto-value>
<carto-attribute> Color | Thickness | Texture | Annotation |
 Text | Symbol | Layout | Legend | Title |
 No-of-map-per cuboid | Normalize
<carto-value> <name> | <num>
<num> <digit>+ (. <digit>+)? (E (+ | -)? <digit>+)?
<name> <letter> (<letter> | <digit> | <symbol>)*
<letter> A | B | … | Z | a | b | … | z
<digit> 0 | 1 | 2 | 3 | 4 | … | 9
<symbol> - | _ | , | . | :
<operator> = | > | < | + | - | * | /

Figure 4.3. Original map cube grammar.

4.3.2 Grammar review

After reviewing the map cube grammar, we identified the following shortcomings:

 The <aggregate list> element does not allow us to specify multiple aggregate functions. For

example, we cannot express: ‘SUM: column1, COUNT: column2’.

 There is no way to specify the spatial aggregate function to be used. The spatial aggregation

is implicitly performed using geometric union.

 It is impossible to specify maps to be overlaid with the map cube results.

 The Where clause only supports logical conjunctions.

In addition, we identified the following inconsistencies:

 The <name> element allows us to include symbols that can generate confusions. For

example, a valid name in this grammar is ‘variable,variable’; if we use such a name in <join

attribute list> element, we get an invalid comparison expression.

 The <base-table name> element should be defined in the same way as <base-map name>

element, i.e., as a list of names separated by commas. This suggests a lack of uniformity in

the grammar.

 60

 <operator> element allows us arithmetic and comparison operators. This can generate

errors, e.g., <join attribute list> element only makes sense for comparison operations;

however, the grammar allows us arithmetic operations here. Similarly, <aggregate list>

element only makes sense for arithmetic operations; however, the grammar allows us

comparison operations here.

4.3.3 Proposed grammar changes

Following is the new grammar for map cube, see Figure 4.4. The changes are in blue.

Base Map <name list>
Base Table <name list> (Where <condition>)?
Aggregate by <aggregate list>
Reclassify by <attribute list>
Data cube dimension <attribute list>
Cartographic preference (<overlay clause>)? <carto attribute list>

<name list> <name> (, <name>)*
<condition> <join attribute pair> (<logical operator> <join attribute pair>)*
<join attribute pair> <column name> <comparison operator>
 (<column name> | <value>)
<aggregate list> <aggregate type> (, <aggregate type>)*
<aggregate type> <simple aggregation> | <spatial aggregation>
<simple aggregation> <simple aggregation unit> (<arithmetic operator>
 (<simple aggregation unit> | <num>))* (AS <name>)?
<simple aggregation unit> (<simple aggregate function> |
 <special aggregate function>): <column name>
<special aggregate function> <numeric spatial function>: <spatial aggregate function>
<spatial aggregation> <spatial aggregation unit> (AS <name>)?
<spatial aggregation unit> <spatial aggregate function>: <column name>
<attribute list> <column name> (, <column name>)*
<carto attribute list> <carto-attribute-value pair> (, <carto-attribute-value pair>)*
<overlay clause> Overlay: (<name list>)
<carto-attribute-value pair> <carto-attribute> = <carto-value>
<carto-attribute> Color | Thickness | Texture | Annotation |
 Text | Symbol | Layout | Legend | Title |
 No-of-map-per cuboid |Normalize
<carto-value> <name> | <num>
<column name> <name> | <compound column>
<compound column> <name> . <name>
<user function> <name>
<value> '<name>' | <num>
<name> <letter> (<letter> | <digit> | _)*
<num> (-)? (<digit>)+ (. (<digit>)+)?
<letter> A | B | … | Z | a | b | … | z
<digit> 0 | 1 | 2 | 3 | 4 | … | 8 | 9
<arithmetic operator> + | - | * | /
<comparison operator> =| > | < | >= | <= | <>
<logical operator> AND | OR
<simple aggregate function> SUM | MAXN | MINN | COUNT | MEDIAN |
 AVG | MAX | MIN | <user function>
<numeric spatial function> AREA | PERIMETER | LENGTH | <user function>
<spatial aggregate function> GEOMETRIC_UNION | INTERSECTION |

 61

 CENTER_OF_MASS | CONVEX_HULL | MBR |
 MBC | VORONOI_DIAGRAM | <user function>

Figure 4.4. New map cube grammar.

The main changes are:

 Base Map and Base Table can contain a list of names, i.e., <table list> element. A name can

only contain letters, digits, and underscores.

 Arithmetic and comparison operators are separated into <arithmetic operator> and

<comparison operator> elements respectively. We have also broadened the set of

comparison operators with: >=, <=, and <>; and add a <logical operator> element that

allows us to specify conjunctions and disjunctions.

 <condition> element is added to support join conditions and simple comparisons (a

comparison between a column and a numeric or string value).

 <aggregate list> element is modified to support a list of simple and spatial aggregate

functions. A simple aggregate function returns a numeric or a string value and can be of two

types: a) a conventional aggregate function such as COUNT, SUM, MAX, and b) a

combination of a numeric spatial function such as AREA, LENGTH, PERIMETER, with a

spatial aggregate function, e.g., ‘AREA: GEOMETRIC_UNION: spatialcolumn’. A spatial

aggregate function returns a geometry or set of geometries, see Section 4.4. If there are

several spatial aggregations in the same sentence, they are overlaid using a simple union

process [Tomlin 1990], [Longley 2005].

 <overlay clause> element is added. It allows us to specify a list of maps to be overlaid with

the map cube results. The overlay process is performed using a simple union process [Tomlin

1990], [Longley 2005].

 <user function> element allows us to specify user-defined functions. These can be of three

types: simple aggregate, spatial aggregate, and numeric spatial.

4.4 Spatial aggregate functions

The main contribution of our approach is that the user can specify in the map cube operator the

spatial aggregate functions needed for a particular application. Some of the most common spatial

aggregate functions for a set of geometries G are the following:

 Geometric union returns the geometry or set of geometries covered by the geometries in G.

 Intersection returns the geometry or set of geometries shared by the geometries in G.

 62

 Center of mass is a point at which the mass of the geometries in G may be considered to be

concentrated. For example, the center of mass of a set P of points (with equal masses at each

point) is the arithmetic mean of each coordinate of the points.

 Convex hull is the smallest convex polygon c that surrounds the geometries in G, i.e., each

geometry in G is either on the boundary or inside c.

 Minimum bounding rectangle (MBR) is the bounding geometry formed by the minimum

and maximum X and Y coordinates in a geometry. This definition can be extended to a set G

of geometries, as Figure 4.5 (c) shows.

 Minimum bounding circle (MBC) is the smallest circle that contains the geometries in G.

 Voronoi diagram for a set of points P is the partition of the plane that associates a region

R(p) with each point p P in such a way that all points in R(p) are closer to p than to any

other point in P. R(p) is the region of influence of p.

Figure 4.5 show examples of some of these functions for points. For each spatial aggregate function

to be used in a map cube sentence, a <spatial aggregation unit> is required:

<spatial aggregation unit> <spatial aggregate function>: <column name>

Where <spatial aggregate function> is the name of a spatial aggregate function and <column

name> is the name of a column that contains spatial data. If the application requires a spatial

aggregate function other than those listed above, the user can specify it in the <user function>

element.

Figure 4.5. Examples of spatial aggregate functions for points: a) input set, b) convex hull,

c) MBR, and d) center of mass.

4.5 Case study – analyzing crimes

We consider six Chicago Northwest neighborhoods (community areas): Logan Square, Hermosa,

West Humboldt Park (WHP), Humboldt Park (HP), West Garfield Park (WGP), and East Garfield

Park (EGP). We analyze data about three types of crimes: assault, burglary, and vandalism. As a

source we use SpotCrime [2009]. Figure 4.6 shows our DW model. A sample data of Crimes table

is shown in Table 4.2.

a) b) c) d)

 63

Figure 4.6. A spatial DW for crimes.

Crime_points is a spatial measure that represents the points where crimes were committed. We

adopt Han’s definition of spatial measure [Han 1998]. A spatial measure contains a collection of

pointers to spatial objects; in our model, a collection of pointers to points. A map of the

neighborhoods is shown in Figure 4.7 (a), and a map of crimes is shown in Figure 4.7 (b); the data

correspond to the period from 2008-Oct-01 to 2008-Oct-08.

 Assault
 Burglary
 Vandalism

Figure 4.7. Maps: a) Neighborhoods_Map and b) Crimes_Map.

 Crimes

#Victims
Crime_points

Day

Crime_type

Neighborhood

Month

Year

City

All

All All

CRIME_TYPE
dimension

TIME
dimension

GEOGRAPHIC
dimension

Logan Square

Humboldt Park

Hermosa

West
Humboldt

Park

East Garfield
Park West

Garfield
Park

a) b)

 64

Now, suppose police analysts want to know where crimes concentrate: i) by neighborhood, ii) by

type of crime, iii) by neighborhood and type of crime, and iv) by the whole city. We will use center

of mass and convex hull to find the crimes concentration; however, other functions such as MBR

could be used. Police analysts also want to know the total number of victims in accordance with

previous groups and overlay the results with neighborhoods map. To solve this request, we can

apply map cube as follows.

Base Map Crimes_Map

Base Table Crimes

Aggregate by CONVEX_HULL: Crime_points AS Conv_hull,

CENTER_OF_MASS: Crime_points AS Cent_mass,

SUM: #Victims AS Sum_victims

Reclassify by Neighborhood, Crime_type

Data cube dimension Neighborhood, Crime_type

Cartographic preference Overlay: (Neighborhoods_Map)

Map cube generates results for the cuboids (Neighborhood, Crime_type), (Neighborhood),

(Crime_type), and (All). Table 4.4 shows the results by neighborhood and type of crime (only

results for Logan Square and Hermosa are shown). Spatial aggregations of crimes are shown in

Figure 4.8. Table 4.4 and Figure 4.8 make up cuboid (Neighborhood, Crime_type).

Table 4.4. Cuboid (Neighborhood, Crime_type).

Bottom levels Measures

Neighborhood Crime_type Conv_hull Cent_mass Sum_victims
Logan Square Assault CH1 CM1 8
Logan Square Burglary CH2 CM2 6
Logan Square Vandalism CH3 CM3 7
Hermosa Assault CH4 CM4 3
Hermosa Burglary CH5 CM5 2
Hermosa Vandalism CH6 CM6 2

…

 65

 Center of Mass Assault
 Center of Mass Burglary
 Center of Mass Vandalism

 Convex Hull Assault
 Convex Hull Burglary
 Convex Hull Vandalism

Figure 4.8. Concentration of crimes by neighborhood and type of crime.

Table 4.5 and Figure 4.9 show the results of cuboid (Neighborhood). In Figure 4.9, the center of

mass in each neighborhood represents a potential point for implementation of security policies, e.g.,

placing patrols around these points. Similarly, in the region defined by each convex hull in each

neighborhood, more police officers could be assigned. Analogous results are generated for cuboids

(Crime_type) and (All).

Table 4.5. Cuboid (Neighborhood).

Bottom levels Measures

Neighborhood Crime_type Conv_hull Cent_mass Sum_victims
Logan Square all CH1 CM1 21
Hermosa all CH2 CM2 7
West Humboldt Park all CH4 CM4 11
Humboldt Park all CH3 CM3 27
West Garfield Park all CH6 CM6 23
East Garfield Park all CH5 CM5 36

 66

 Grouping of Crimes by Center of Mass
 Grouping of Crimes by Convex Hull

Figure 4.9. Concentration of crimes by neighborhood.

Finally, an example of the Voronoi diagram is shown in Figure 4.10, the Voronoi diagram of crimes

for the cuboid (Neighborhood). For example, each region of the Voronoi diagram could help to

assign patrols and police officers in order to attend more quickly crime reports.

Figure 4.10. Voronoi diagram of crimes by neighborhood.

4.6 Conclusions and future work

In this chapter, we extended the functionality of the map cube operator. Our main contribution is to

allow the user to choose the spatial aggregate functions appropriate for his domain. In addition, we

 67

extend this operator for supporting several spatial aggregate functions simultaneously and overlay

its results with maps. We also fixed some inconsistencies of the map cube grammar.

To illustrate the convenience of our proposal, we presented a case study about crimes. The results

presented in maps can help police analysts to identify spatial patterns at different levels of detail,

e.g., in the whole city and in each of its neighborhoods. Consequently, policies could be formulated

in order to create or relocate, e.g., police stations and hospitals and to place, e.g., patrols and police

officers across the city.

While the original version of map cube provides visualization facilities such as color, width of lines,

and gray scale, among others, more features could be incorporated to this operator. For example, a

symbol or color system that allows users to specify how they want certain regions and points to be

depicted as in the case study about crimes, e.g., squares and bold lines to represent assaults, crosses

and dashed lines to represent burglaries, and triangles and dotted lines to represent vandalisms.

However, the operator should not be overcrowded with features such as these, because a

visualization tool could be more suitable for this purpose.

In addition, the visualization of some spatial aggregate functions may be difficult to understand. For

example, consider the Voronoi diagram for geographical points where crimes occurred for the

cuboid (Crime_type). Three Voronoi diagrams, one for each type of crime, are generated and

overlaid in a single map. Unless we offer the user a way to distinguish them, we may end drawing

an obfuscated diagram.

Another work is the incorporation of temporal elements. For example, in the case study about

crimes, suppose we have data about the evolution of neighborhoods shapes. For police analysts, it

might be interesting to see the map cube results according to these spatial changes.

Finally we are currently working in the incorporation of a Trajectory function to the map cube

operator, a spatio-temporal aggregate function. The essential idea is to infer a trajectory from the

facts as we explained in Chapter 1.

 68

Part II. Trajectories

 69

Chapter 5: A Conceptual Trajectory Multidimensional Model

5.1 Introduction

Conventional DWs mainly manage alphanumeric data; however, in recent years DWs have been

enriched, e.g., with spatial data that can be useful to discover patterns that otherwise would be

difficult to recognize [Han 1998], [Bédard 2001], [Jensen 2004], [Bimonte 2005], [Damiani 2006],

[Malinowski 2008].

Support for temporal data has also been incorporated in DWs as explained in Chapter 1 (a survey

can also be seen in Golfarelli [2009a]). In fact, although DWs include a TIME dimension, this

dimension is not oriented to keep track of changes in other dimensions [Malinowski 2008];

therefore, additional temporal support is required.

On the other hand, with the advance of technologies such as sensors and GPS, other types of data

are becoming available in huge quantities, e.g., trajectory data about movements of people, animals,

vehicles, ships, airplanes. “The concept of trajectory is rooted in the evolving position of some

object travelling in some space during a given time interval” [Spaccapietra 2008]. This definition

entails the spatio-temporal nature of a trajectory. We believe that the incorporation of this new type

of data into a DW can help decision-makers to discover interesting spatio-temporal behaviors. In

this chapter, we extend a conceptual spatial multidimensional model by incorporating a trajectory as

a first-class concept.

Although there are specialized works related with trajectory DWs [Braz 2007], [Orlando 2007a],

[Orlando 2007b], [Marketos 2008]; none of them is devoted to conceptual modelling. They focus on

operators for analyzing trajectory data and some of them also address ETL (Extract, Transform, and

Load) issues [Braz 2007], [Orlando 2007a], [Marketos 2008].

There are a few proposals [Brakatsoulas 2004], [Spaccapietra 2008] that address conceptual

modelling of trajectories but in a non-multidimensional context. In [Brakatsoulas 2004], the authors

present a specialized non-multidimensional model for a traffic management system, focusing on

trajectories, vehicles, and roads. In [Spaccapietra 2008], two non-multidimensional conceptual

modelling approaches for trajectories of moving points are proposed. The first one uses a design

pattern, i.e., a predefined schema that can be adjusted to meet specific trajectory requirements. The

 70

second one uses dedicated trajectory data types equipped with a set of methods to manipulate

trajectories. Methods can be added to the data types to meet specific trajectory requirements.

This chapter is organized as follows. In Section 5.2, we present a motivating example. In Section

5.3, we discuss trajectories and their components, and introduce our multidimensional trajectory

modelling approaches. Finally, in Section 5.4, we end the chapter and outline future research.

5.2 Motivating example

Consider a taxi company that needs to analyze its daily taxi journeys. Taxis are classified according

to fuel type, e.g., gasoline, compressed natural gas (CNG), or E85 (85% bioethanol and 15%

petrol). Data about the total number of passengers, the total number of gallons of fuel consumed,

and the total fares collected by a taxi during a working day are recorded. A multidimensional model

to represent this scenario is shown in Figure 5.1. A sample data of Taxi_journeys fact relationship is

shown in Table 5.1.

Figure 5.1. A conventional multidimensional model for analyzing taxi journeys.

Table 5.1. Sample data of Taxi_journeys fact relationship.

Bottom levels Measures

Taxi Day #Passengers #Gallons_consumed Fare ($)
tx1 2008-Jan-01 25 12 500
tx1 2008-Jan-02 20 11 600
tx2 2008-Jan-01 31 12 450
tx2 2008-Jan-02 30 13 400

Fuel_
type

Taxi Day

Month

Year

#Passengers
#Gallons_consumed

Fare

 Taxi_journeys

TIME
dimension

TAXI
dimension

All
All

 71

Taxi_journeys fact relationship facilitates data analysis. For example, analysts can formulate

queries such as: What is the total number of gallons consumed monthly by fuel type? What are the

days of the week where on average more passengers were transported in 2008? What are the top

three most profitable taxis in each month? (Where profitability could be computed based on fuel

consumption and taxi fares). These queries can be solved using current OLAP tools.

However, suppose that the taxi company also records information about the routes followed by the

taxis during a day, i.e., their trajectories. In order to track a taxi’s trajectory, a sensor sends several

data packages. Each data package contains information about the position of the taxi at a specific

minute, along with other information, e.g., weather conditions, the speed and fuel level (if the taxi is

moving), the number of gallons of fuel purchased (if the taxi stopped to fill up), the fare (if the taxi

completed a ride).

This information enables trajectory data analysis. For example, given a set of taxi trajectories,

analysts could formulate the following queries:

i) Find the common points of the taxi trajectories that occurred in the previous month. For that

purpose, spatial and temporal thresholds could be considered: two taxi trajectories could have points

separated just for one or two blocks and their trajectories could be separated in time for at most two

hours. In practice such points could be considered common, see Figure 5.2,

ii) Give a quantitative indicator of similarity [Pelekis 2007] of the taxi trajectories that occurred on

business days and that use gasoline, e.g., how similar in shape is a set of trajectories, see Figure 5.3,

direction, average speed, or profit (where the trajectories’ profits could be calculated based on

gallons of gasoline purchased and taxi fares),

iii) Compose a larger trajectory, see Figure 5.4. For example, we could assemble all the trajectories

of a taxi during January 2008 and generate a single trajectory for this month. In Figure 5.4, we

connect the end of the first trajectory (End1) with the begin (Begin2) of the second trajectory. We

assume that the object moves along a straight line from End1 to Begin2 at a constant speed, and

iv) Find the number of taxi trajectories that intersect a given region, e.g., the downtown area, during

the day. This number is called presence [Braz 2007], [Orlando 2007a], see Figure 5.5.

The answers to these questions could help to identify, e.g., profitable routes, points to place speed

controls and taxi stations, regions of intense traffic.

 72

Figure 5.2. Two trajectories considered common within specific temporal and spatial thresholds.

Figure 5.3. Two trajectories similar in shape.

Figure 5.4. Assembling two trajectories. We assume that the object moves along a straight line from End1 to

Begin2 at a constant speed.

Trajectory 1

y

t

x

Trajectory 2

y

t

x

Composed

trajectory

Route 2

Route 1

Route

End2

End1

 Begin1

 Begin2

End

 Begin

t

x y Routes

Trajectories
End

Begin
End

Begin

x

(12, 30, 9:30, …)

t

(10, 30, 10:30, …)

(12, 10, 11:30, …) (10, 20, 11:30, …)
(12, 20, 10:30, …)

(10, 10, 12:30, …)

y
Routes

Trajectories

 73

Figure 5.5. Three trajectories, two of them passed through region R during the same day.

5.3 Trajectories

A trajectory is the record of the evolution of the location of an object that is moving in space during

a specific interval [t1, tn] [Spaccapietra 2008]. This interval can be defined by the user or be

application-dependent, e.g., we could consider daily or weekly trajectories for a taxi. The definition

of trajectory allows an object to make several trajectories during its lifespan, each with its specific

interval. The trajectories of an object are disjoint and are not necessarily consecutive in time.

We represent a trajectory T as a sequence of observations (generated by a sensor), i.e., time-

stamped locations that can include complementary semantic data about the trajectory. T = <o1, o2,

…, on> where each oi = (loci, ti, semi), i.e., the travelling object is at location loci at time ti (ti < ti+1)

and semantic data semi can be associated with each observation. For example, consider a taxi

trajectory, in addition to the location and time of each of its observations, we could include

semantic data such as temperature, speed, and fuel level.

Note that for a moving region the projection on the plane of its trajectory locations gives us its

traversed area [Güting 2005]. For a moving point the projection on the plane of its trajectory

locations gives us its route [Vazirgiannis 2001], [Frentzos 2005]. For simplicity, we restrict the

discussion hereafter on moving points. Unless more information becomes available, the object is

assumed to move along a straight line from location (xi, yi) to location (xi+1, yi+1) [Güting 2005].

Figure 5.6 shows the trajectory of a moving point with four observations and its corresponding

route.

(15, 40, 9:30, …)

(15, 25, 10:30, …) (5, 50, 11:30, …)

(5, 10, 11:30, …)
(5, 40, 11:45, …)

(5, 30, 11:55, …)

t

x y

(20, 15, 13:30, …)

(15, 5, 14:30, …)

Region

R

 74

Figure 5.6. Trajectory of a moving point.

Note that we attach semantic information to trajectories, which is of fundamental importance for

their analysis [Alvares 2007], [Guc 2008]. However, not necessarily the same type of semantic data

is included in all the observations. For example, consider again a taxi trajectory: when the taxi stops

to fill up, we could collect data about the number of gallons of fuel purchased; when the taxi stops

to pick up passengers, we could collect data about the fare; when the taxi is moving, we could

collect data about its speed and fuel level; see Figure 5.7. Therefore, depending on the requirements

of a particular application, trajectory observations can be classified into types. In the previous

example, we could define three types of observation: fill-ups, pick-ups, and moves. There could be

some semantic data common to all or some of the types of observation defined. For example, data

about weather conditions could be included in the three types of observation previously defined, as

illustrated in Figure 5.7 (temperature).

((x1, y1), t1, sem1)

t

((x2, y2), t2, sem2)

((x3, y3), t3, sem3)

((x4, y4), t4, sem4)

x y

Trajectory

Route

 75

Figure 5.7. Three types of observation for a taxi trajectory.

To represent a trajectory in our multidimensional model, we propose the icons of Figure 5.8. Figure

5.8 (a) represents the trajectory of a moving generic geometry Geo. A Geo can be replaced by a

simple or a complex geometry (spatial data types), see Figure 5.9. For example, Figure 5.8 (b)

represents the trajectory of a moving point (e.g., a taxi), Figure 5.8 (c) the trajectory of a moving

line (e.g., a train), Figure 5.8 (d) the trajectory of a moving region (e.g., a hurricane, an oil spill),

and Figure 5.8 (e) the trajectory of a moving group of regions (e.g., a group of clouds).

t

x y

A fill-up observation:
Location: (20, 100)
Time: 2008-Jan-01 9:00

Semantic information:
Gallons purchased: 2 gal
Stopping time: 5 min
Temperature: 80 k

The taxi is
filling up

A pick-up observation:
Location: (35, 20)
Time: 2008-Jan-01 10:15

Semantic information:
Fare: 30 $
Stopping time: 3 min
Temperature: 82 k

The taxi is
picking up
passengers

Taxi

A move observation:
Location: (18, 50)
Time: 2008-Jan-01 9:30

Semantic information:
Speed: 60 kmh
Fuel level: 4 gal
Temperature: 85 k

The taxi is
moving

Taxi

Taxi

 76

Figure 5.8. Notations for a trajectory of a moving: a) generic geometry, b) point, c) line, d) region, and e)

group of regions.

Figure 5.9. Notations for: a) simple geometries and b) complex geometries.

Source: [Parent 1999], [Malinowski 2008].

In order to specify types of observation and their corresponding semantic fields, we propose the

notation shown at Figure 5.10. Note that each observation type implicitly includes the object’s

location (in accordance with the geometry associated with the trajectory) and its corresponding

timestamp. For example, consider the icon of Figure 5.8 (b); an instance of an observation type of

this trajectory is represented as ((x, y), t, semantic fields). Now consider Figure 5.8 (c); an instance

of an observation type of this trajectory is represented as ((p1, p2), t, semantic fields), where p1 and

p2 are points that define, e.g., a straight line.

In the following section, we incorporate a trajectory into a multidimensional model. To facilitate

this task, we propose two modelling approaches: composed multivalued timestamped measures and

composition of facts.

Geo

Geo

Geo

a) b) c)

d) e)

Point

Line

Region

Point set

Line set

Region set

a) b)

 77

Figure 5.10. Representation of types of observation: a) a trajectory of a moving point with n types of

observation, b) a taxi trajectory with three types of observation, and c) instances of types of observation of b).

5.3.1 Composed multivalued timestamped measures

Continuing with the example of taxi trajectories, we classify taxi observations into three types: fill-

ups, pick-ups, and moves. The following semantic data are associated with them: stopping time and

number of gallons of fuel purchased with fill-ups, stopping time and fare with pick-ups, and fuel

level and speed with moves. Note that we consider observations as sensor snapshots. In this

example, we assume a minute as the temporal granularity of an observation.

We define one fact relationship, Taxi_journeys, see Figure 5.11. Observations are represented by

three composed multivalued timestamped measures: Fill_up, Pick_up, and Move; they are

described in Table 5.2. Table 5.3 shows a sample data of Taxi_journeys fact relationship.

Although this solution is natural and compact, it has some drawbacks: i) aggregate functions must

deal with multivalued measures, which could prevent their use in current OLAP systems, ii)

handling of the relationship between the observations’ timestamps and the TIME dimension is

required in order to enable time hierarchy navigation, because these implicit timestamps are not

connected to a time level, e.g., Minute (dimension levels are connected to fact relationships, but not

to measures), and iii) time consistency checkings are required, e.g., the observations’ timestamps

must “rollup” to the same day associated with their taxi journey, and the timestamp of an

observation cannot intersect the interval made up by the timestamp of any fill-up (or pick-up)

observation plus its stopping time. In order to overcome some of these difficulties, we propose an

alternative modelling approach in the following section.

Trayectory_name{
 Observation_type1(semantic fields),
 Observation_type2(semantic fields),
 …
 Observation_typen(semantic fields)
}

a) b)

c)

Taxi_trajectory{
 Fill_up(#Gallons_purchased),
 Move(Speed, Fuel_level),
 Pick_up(Fare)
}

< ((x1, y1), t1, 3 gal),
 ((x2, y2), t2, 60 kmh, 6 gal),
 ((x3, y3), t3, 75 kmh, 5 gal),
 ((x4, y4), t4, 2 gal),
 ((x5, y5), t5, 25$),
 ...
>

Moves Fill-ups

Pick-up

 78

Figure 5.11. A multidimensional model for analyzing taxi trajectories using composed multivalued

timestamped measures.

Table 5.2. Measures of our multidimensional model of taxi trajectories.

Measure Description Associated
observation type

Data type

Taxi_trajectory Represents the taxi’s trajectory. - Spatio-
temporal

Timestamp Represents the time of an
observation

Implicit in all the
observations

Temporal

Location Represents the spatial position of the
taxi.

Implicit in all the
observations

Spatial

Stopping_time Registers how much time the stop
lasted.

Fill_up, Pick_up Numeric

#Gallons_purchased Records the number of gallons of
fuel purchased.

Fill_up Numeric

Fare Represents the money paid for a taxi
ride.

Pick_up Numeric

Fuel_level Represents the current fuel level in
the taxi’s fuel tank.

Move Numeric

Speed Represents the current speed of the
taxi.

Move Numeric

#Passengers Records the number of passengers
transported.

- Numeric

#Gallons_consumed Records the number of gallons of
fuel consumed.

- Numeric

Table 5.3. Sample data of Taxi_journeys fact relationship.

 Taxi_trajectory{
 Fill_up(Stopping_time,
 #Gallons_purchased),
 Pick_up(Stopping_time,
 Fare),
 Move(Fuel_level, Speed)
}
 #Passengers
 #Gallons_consumed

Fuel_
type

Taxi Day

Month

Year

 Taxi_journeys

TAXI
dimension

All
All

TIME
dimension

 79

Bottom levels Measures

Taxi Day Taxi_trajectory #Passen-

gers

#Gallons_

consumed

tx1 2008-Jan-01 {

 ((10, 95), 2008-Jan-01

 7:10, 2 gal, 50 kmh),

 ((10, 80), 2008-Jan-01

 7:20, 8 min, 3 gal),

 ((12, 70), 2008-Jan-01

 8:30, 2 min, 30 $),

 …}

25 12

tx1 2008-Jan-02 {

 ((30, 75), 2008-Jan-02

 7:20, 2 gal, 80 kmh),

 ((25, 65), 2008-Jan-02

 8:30, 1 gal, 40 kmh),

 ((20, 50), 2008-Jan-02

 8:50, 10 min, 4 gal),

 …}

20 11

5.3.2 Composition of facts

We define four fact relationships: Taxi_journeys, Fill_ups, Pick_ups, and Moves; see Figure 5.12.

In this approach, the Taxi_trajectory measure is derived from the fact relationships Fill_ups,

Pick_ups, and Moves, that represent the trajectory observations. A derived measure is generated

from other measures and is shown by preceding its name with a slash (/).

Each taxi journey includes a set of observations; to represent such a composition, we propose a

dotted relationship, see Figure 5.12. A composition such as this implies that if a taxi makes a taxi

journey on a day (e.g., 2008-Jan-01), there must be a non-empty set of observations associated with

this journey. In addition, the minute values of those observations must rollup to the same day

(2008-Jan-01).

This approach, unlike the previous one, does not require the handling of multivalued measures, and

the observations’ timestamps are explicitly connected to a time level, enabling time hierarchy

navigation. However, this solution also has some drawbacks: i) an operation that relates fact

relationships is required in order to combine a taxi journey with its observations, i.e., a type of drill-

across operation [Golfarelli 1998], and ii) handling of several fact relationships can become

A fill-up

A pick-up

A move

A move

A fill-up

A move

 80

complex, e.g., to the formulation of queries. Because a fact relationship is created for each

observation type, if the number of types of observation is high, we would have to deal with a

proliferation of fact relationships. In Table 5.4, we compare our trajectory modelling approaches.

Figure 5.12. A multidimensional model for analyzing taxi trajectories using composition of facts.

Table 5.4. Comparison of our trajectory modelling approaches.

Trajectory Composed multivalued

timestamped measures
Composition of facts

Representation Trajectories are explicitly represented and

play the role of a measure.
Trajectories are explicitly represented and
play the role of a derived measure.
A type of drill-across operation is required to
combine the observations of a trajectory.

Aggregation Operators for trajectory aggregation could
be used.
Parts of the trajectory (observations) can
also be aggregated.
Aggregate functions must deal with
multivalued measures.

Operators for trajectory aggregation could be
used.
Parts of the trajectory (observations) can also
be aggregated.

Day

Taxi

 Taxi_journeys

Month

 Fill_up

Minute

Fuel_type

Location
Stopping_time
#Gallons_purchased

Year

 Pick_ups Move

Location
Stopping_time
Fare

Location
Fuel_level
Speed

All All

TIME

dimension

TAXI

dimension

 Taxi_trajectory
#Passengers
#Gallons_consumed

/

 81

Observations Types of observation are represented in a
compact and natural way in just one fact
relationship.
The observations’ timestamps are not
connected to a time level, implying
additional time consistency checkings and
navigational capabilities.

A fact relationship is created for each
observation type. If the number of types of
observation is high it results in a proliferation
of fact relationships.
The observations’ timestamps are connected
to a time level, enabling time hierarchy
navigation.

5.3.3 Granularity and aggregation of measures

It is a design decision to determine the level of detail of a measure, e.g., we could represent

#Gallons_purchased as a Taxi_journeys measure instead of a Fill_ups measure, or we could

represent #Passengers as a Pick_ups measure instead of a Taxi_journeys measure.

Note that Fill_ups, Pick_ups, and Moves measures have a lower time granularity (minute) with

regard to the time granularity (day) of Taxi_journeys measures. However, as usual in a

multidimensional model, we can aggregate Fill_ups, Pick_ups, and Moves measures in order to

generate aggregates at a coarser granularity, e.g., we can find the total money collected by a taxi on

a day by adding all its corresponding taxi fares. In particular, the aggregation of Location, which

plays the role of a spatial measure, must be performed using a spatial aggregate function, such as

geometric union, center of mass, convex hull, and others. For example, suppose we select the

locations of taxis where they stopped to fill up, the center of mass of these locations could suggest a

place to set up a gas station. As usual in DWs, some of these aggregates could be precalculated in

order to speed up time response of queries.

On the other hand, the aggregation of the Taxi_trajectory measure leads to interesting questions,

such as those described in Section 5.2. For example, suppose we want to compose the trajectories of

each taxi. Next, we give the reader an idea of how this query could be formulated in an SQL-like

way:

SELECT Taxi, Compose_trajectory(Taxi_trajectory) AS Comp_traj

FROM Taxi_journeys

GROUP BY Taxi;

Where Compose_trajectory() is an aggregate function to assemble trajectories as illustrated in

Figure 5.4. Obviously, such a function must be formally defined.

 82

5.4 Conclusions and future work

We proposed a notation to represent trajectories as a first-class concept in a conceptual spatial

multidimensional model. We stressed the semantic nature of a trajectory by classifying its

observations in accordance with their semantic data. Two modelling approaches were presented.

The first one is based on composed multivalued measures. The second one is based on composition

of facts relationships.

A preliminary judgement suggests that the first approach could be more suitable than the second

one when the number of types of observation is high. However, other criteria, such as handling of

aggregation, implementation issues, storage, among others, must be considered in order to evaluate

both approaches.

As future work, we plan to transform our conceptual model into a logical one. From a physical

point-of-view, a related issue is how to store and efficiently retrieve a trajectory in a

multidimensional context. Data structures and indexing schemes must be designed for this purpose.

We also plan to develop a query language in order to express analytical trajectory queries, such as

the ones of Section 5.2. Operators related to trajectory aggregation should also be addressed. The

works of [Braz 2007], [Orlando 2007a], [Orlando 2007b], [Marketos 2008] are points of departure

for these issues.

As we explained in Chapter 1, the notion of season arises in the context of trajectories. Informally, a

season is an interval during which a moving object is associated with another object. For example,

in the case of taxi trajectories, we can consider seasons of a taxi in a given region. In the following

chapter, we specialized the notion of season, where we focus specifically on seasons that arise in the

context of reclassification trajectories.

 83

Part III. Seasons

 84

Chapter 6: Season Queries on a Temporal Multidimensional Model

6.1 Introduction

In Chapter 2 we presented a formal multigranular temporal multidimensional model that keeps track

of reclassifications. Based on this model, we introduce in this chapter the notion of season of

reclassification (hereinafter, simply called season), i.e., an interval during which two members of a

dimension are associated with each other, e.g., a salesperson sp1 is associated with a store st1 during

the interval [day 1, day 45], a product pd1 is associated with a category cat1 during the interval [day

1, day 180]. Note that throughout his lifespan a salesperson can experience several (disjoint)

seasons in the same store as well as a product can return to a previous category several times.

If we consider the evolution (a series of assignments) of a salesperson through the stores and the

history of the reclassifications of a product through the different categories, we could establish a

link with the notion of trajectory, see Section 5.3: “The term trajectory is sometimes used in a

metaphorical sense to describe an evolution, although the evolution at hand is not related to physical

movement” [Spaccapietra 2008]. This metaphorical use relies on the idea of an object moving in an

abstract space whose points are the different values for which the object passes. In this sense, we

could consider the trajectory of a product through the categories as a metaphorical trajectory. On

the other hand, the trajectory of a salesperson through the stores has a more geographical

connotation. In either case, we can speak of a reclassification trajectory, i.e., the evolution of a

member of a dimension with regard to its reclassifications, where each of its reclassifications holds

for an interval, i.e., for a season, see Figure 6.1.

 85

Figure 6.1. Reclassification trajectories of: a) a salesperson sp1 and b) a product pd1.

We believe that the notion of season can lead to interesting queries (called season queries in our

work), that can be useful for decision-makers in several situations and application domains.

Consider, e.g., the following queries referring to associations between salespersons and stores:

What was the total number of units sold by salesperson sp1 in his first season in store st1? What was

the season and store when the total number of units sold by salesperson sp1 was the highest? What

was the total number of units sold by each salesperson in each season in each store?

The previous queries can help to adjust rotation policies of staff. In this same scenario, analogous

queries can help to identify periods for recategorizing products and reclassifying customers. Season

queries can also be useful in other scenarios. For example, in a soccer competition scenario they can

help to assess the players’ performance in face of the dynamics of their transfers; this type of

analysis can help to understand the economics of soccer, a field that is still in its infancy [Torgler

2007]. In environmental sciences analogous season queries can be useful to evaluate the impact of

recurrent phenomena, such as hurricanes over a region.

To the best of our knowledge, there is no language or operator that allows one to formulate this type

of query in a concise and simple way. In fact, the notion of season is not present in any work we

have found in the literature. Although, in TOLAP (a temporal multidimensional query language)

[Mendelzon 2000] it is possible to formulate queries such as: What was the total number of units

sold by salesperson sp1 when he has worked in store st1?; TOLAP is not oriented to formulate

season queries.

a) b)

 [day 211, day 390]

[day 46, day 210]

[day 1, day 45]

st2

st1

sp1

sp1

sp1

 [day 271, day 390]

[day 181, day 270]

[day 1, day 180]
 Electronic

devices

Toys &
Games

pd1

pd1

pd1
Madison Av.

5 Av.

st1
Madison Av.

Electronic
devices

cat1

cat2

cat1

 86

In order to deal with season queries, we start from our formal multigranular temporal

multidimensional model, see Chapter 2. Then, we derive the formal notion of season and an

operator to express season queries. Our operator receives a cube, i.e., a multidimensional collection

of data [Jarke 2003], and returns a new cube, thus facilitating its integration into a multidimensional

query language, and enabling the composition of queries and integration of their results.

The rest of the chapter is organized as follows. In Section 6.2, we introduce and formalize the

notion of season around the model of Chapter 2. In Section 6.3, we propose and exemplify an

operator for season queries. Finally, in Section 6.4, we present conclusions and future work.

6.2 Seasons

Informally, a season is an interval during which a member of a level is associated with a member of

a higher level, e.g., a season of a salesperson in a store, a season of a store in a status, a season of a

product in a category. Although we use the word “season”, there are other more precise words

referring to periods during which some kind of association applies in some domains, e.g., a “term”

of a president in a department, a “shift” of a worker at a machine, a “spell” of an atmospheric

phenomenon in a region, among others.

Next, we give a formal definition of a season of association between two members of consecutive

levels in a dimension schema. Let l1, l2 be levels, a dom(l1), b dom(l2), and the pair (l1, l2) ≼'

is temporal with TRG . A season of a in b is an interval S with temporal granularity ’, where:

i)’ ↝ ,

ii)t S, RUP_l1_l2(a, t) = b,

iii) if RUP_l1_l2(a, Start(S) − 1) is defined then RUP_l1_l2(a, Start(S) − 1) ≠ b, and

iv) if RUP_l1_l2(a, End(S) + 1) is defined then RUP_l1_l2(a, End(S) + 1) ≠ b.

Note that conditions iii) and iv) guarantee that S is a maximum interval during which a is associated

with b. A general definition of a season of association between a member a of a level l1 and a

member b of a higher level lj of l1 is given next. Let l1, l2, l3, …, lj be levels of a dimension schema,

j > 1, where l1 ≼' l2 ≼' l3 … ≼' lj. Let U ≠ be the set of TRGs along the path l1 ≼' l2 ≼' l3 … ≼' lj,

 87

a dom(l1), and b dom(lj). A season of a in b is an interval S with temporal granularity ’,

where:

i) U, ’ ↝ ,

ii)t S, RUP_ l1_lj(a, t) = b,

iii) if RUP_l1_lj(a, Start(S) − 1) is defined then RUP_l1_lj(a, Start(S) − 1) ≠ b, and

iv) if RUP_l1_lj(a, End(S) + 1) is defined then RUP_l1_lj(a, End(S) + 1) ≠ b.

If U = then during its lifespan a is always associated with b; as a consequence, we consider S as

the unique season of a in b, where Start(S) and End(S) correspond to the lifespan of a.

Example 6.1. Consider again the Example 2.5. The rollup values (stores) for a salesperson sp1 are

shown in Table 6.1, and the rollup values (status) for stores st1 and st2 are shown in Table 6.2. For

the sake of simplicity, we assume months of 30 days.

Table 6.1. Rollup values (stores) for salesperson sp1.

Salesperson sp1 sp1 sp1 sp1 sp1
Day 1 - 45 46 - 210 211 - 390 391 - 480 481 - 540
Store st1 st2 st1 No_store st2

Table 6.2. Rollup values (status) for stores st1 and st2.

Store st1 st1 st1 st2 st2 st2
Semester 1 2 3 1 2 3
Status A A B B A A

From Tables 6.1 and 6.2 we can see that [day 1, day 45] and [day 211, day 390] are seasons of sp1

in st1, [day 46, day 210] and [day 481, day 540] are seasons of sp1 in st2. [semester 1, semester 2] is

a season of st1 in status A, [semester 3, semester 3] is a season of st1 in status B, [semester 1,

semester 1] is a season of st2 in status B, and [semester 2, semester 3] is a season of st2 in status A.

Consequently, [day 1, day 45], [day 181, day 360], and [day 481, 540] are seasons of sp1 in status

A, and [day 46, day 180] and [day 361, day 390] are seasons of sp1 in division B, see Figure 6.2.

Next, we consider the ordering of the seasons of association between two members of a dimension

and define the notion of the nth season. Let S be a season of a in b. S is the first season of a in b if it

does not exist a season S’ of a in b such that End(S’) < Start(S). S is the second season of a in b, if

there exists just one season S’ of a in b such that End(S’) < Start(S). In general, let S = {S1, S2, …,

 88

Sn} be a set of seasons of a in b; then, Si S is the nth season of a in b, where n = |{Sj S | End(Sj)

< Start(Si)}| + 1. We refer to this number as the season number.

Example 6.2. Consider again Figure 6.2. From Example 6.1, [day 1, day 45] is the first season of

sp1 in st1, and [day 211, day 390] is the second season. [day 46, day 210] is the first season of sp1 in

st2, and [day 481, day 540] is the second season. In addition, [day 1, day 45] is the first season of

sp1 in status A, [day 181, day 360] is the second season, and [day 481, 540] is the third season. [day

46, day 180] is the first season of sp1 in status B, and [day 361, day 390] is the second season.

Figure 6.2. Examples of seasons.

6.3 A new operator for season queries

Consider the Example 6.1 and the rollup function extended with valid time. The rollup function

RUP_Salesperson_Store(sp1, day 7), e.g., returns the store in which sp1 was on day 7, i.e., st1.

However, this function does not return the corresponding season of sp1 in st1 or the season number.

To accomplish these and other tasks, we define a season query operator. First, we consider some

guidelines in order to design our operator.

Our operator must form or be part of a closed language. The closure property requires that the

results of an operator are again elements of the data model [Haase 2004]; thus enabling the

combination among query results. In our case, these elements are cubes, i.e., fact tables (hereafter,

we use these terms interchangeably). Hence, our operator must be designed so that it can be

embedded into a multidimensional query language, either theoretical [Cabibbo 1997], [Vassiliadis

Days

Season 1 of
sp1 in st1

1 180 45 360 540 390 210

Season 2 of
sp1 in st1

Season 1 of
sp1 in st2

Season 2 of
sp1 in st2

Season 1 of st1 in status A Season 1 of st1 in status B

Season 1 of st2 in status B Season 1of st2 in status A

Season 1 of
sp1 in status

A

Season 2 of
sp1 in status

A

Season 3 of
sp1 in status

A

Season 1 of
sp1 in status

B

Season 2 of
sp1 in status

B

480

sp1
without

store

 89

1998], [Datta 1999], [Mendelzon 2000], [Pedersen 2001a], or practical, such as MDX [Whitehorn

2005].

Our operator must capture the interesting phenomena, in our case seasons, and must be based on

genuine applications and users’ requirements about seasons, see Section 6.1 and Table 6.3. Our

proposal also attempts to be minimalist, i.e., to minimize the extensions required in a

multidimensional query language in order to support our season queries.

Table 6.3. User requests and query language requirements.

User request Query language requirements

What was the total number of units sold by
salesperson sp1 in all his seasons in store st1, i.e., when
he has worked in st1?

i) Conventional aggregate functions, e.g., SUM,
AVG.
ii) Temporal rollup: find the corresponding store
value associated with a salesperson in a specific time
[Mendelzon 2000].
iii) Restriction and projection of facts with
aggregated measures.

What was the total number of units sold by
salesperson sp1 in his first season in store st1?

i) The same as the previous request.
ii) Season number: find the corresponding season
number of a salesperson in a store in a specific time.

What was the total number of units sold by each
salesperson in each season in each store?

i) The same as the second request.
ii) Intervals of the corresponding seasons.
iii) Grouping of facts.

What was the season (including season number) and
store when the total number of units sold by
salesperson sp1 was the highest?

i) The same as the previous requests.

Table 6.3 summarizes the query language requirements (right column) for some season queries (left

column). In order to meet these user requests and consequent language requirements, we define the

operator Seasons_l1_lj(ft) = ft’ that receives a fact table ft and returns a new one ft’. Informally,

Seasons_l1_lj groups facts based on seasons: for each season of a member of l1 in a member of lj,

the measures of the corresponding facts are aggregated. Each aggregate function, e.g., SUM, AVG,

is applied to each measure. An example is shown in Figure 6.3. Although this may become a very

demanding task, in a concrete query only aggregations requested could be materialized (see

examples in Subsection 6.4.3), i.e., our operator is situated on a declarative level, it does not address

optimization issues.

 90

Figure 6.3. Grouping the facts of the first season of salesperson sp1 in store st1.

6.3.1 Seasons_l1_lj operator: resulting fact schema

We assume a fact schema (F, LF, M) where LF = {f, l1, fl1, fl2, ..., flk} is a set of bottom levels, f is

the bottom level of the TIME dimension, and M = {m1, …, mm} is a set of measures. ft = {fi1, fi2, ...,

fil} is a fact table where each fact instance fii = ({member(f), member(l1), member(fl1), ...,

member(flk)}, {value(m1), ..., value(mm)}).

Let l1, l2, l3, …, lj be levels of a dimension schema Y, j > 1, where l1 ≼' l2 ≼' l3 … ≼' lj, l1 LF. Y is

the dimension on which Seasons_l1_lj operartor will be applied. Seasons_l1_lj is defined as

Seasons_l1_lj(ft) = ft’, where ft’ is a fact table. The resulting fact schema is (F’, LF’, M’) where LF’ =

LF − {f} {Season, lj}. That is:

i) we preserve all the bottom levels of LF except the bottom level of the TIME dimension,

ii) Season is a bottom level of a homonymous dimension schema. The SEASON dimension has two

levels: Season and All, where Season ≼ All. The Season level includes three attributes:

SeasonNumber, SeasonStart, and SeasonEnd; they are explained in Table 6.4,

iii) lj is a bottom level of a dimension schema SUBY1. SUBY1 has a set Z of levels where Z is the

set of levels in Y such that z Z, lj ≼ z, see Figure 6.4, and

iv) l1 in LF’ is a bottom level of a dimension schema SUBY2. SUBY2 preserves all the hierarchies in

Y where l1 is a bottom level, except the hierarchy where l1 ≼ lj. If there are no other hierarchies

where l1 is a bottom level, a level All is generated, where l1 ≼ All, see Figure 6.4.

Day
Sales-
person Product

Units_
sold

[day 1, day 45]

Season Product
SUMUnits_

sold

[day 1, sp1 st1 pd1 3 1,5
 day 45]

Store

[day 1, sp1 st1 pd2 2 1
 day 45]

 1 sp1 pd1 2
 8 sp1 pd1 1

 8 sp1 pd2 1
28 sp1 pd2 1

AVGUnits_
sold

Sales-
person

Store
st1 First season of sp1 in st1

 91

M’ is a set of aggregated measures. Let G = {g1, g2, …, gp} be a set of aggregate functions. Our

season operator applies each aggregate function gi G to each measure mj M. A level name gimj

for each aggregated measure is generated, i.e., M’ = {g1m1, ..., g1mm, ..., gpm1, ..., gpmm}. For

example, if gi = SUM and mj = Units_sold, then gimj = SUMUnits_sold. Figure 6.4 outlines the

original and the resulting schema generated by Seasons_l1_lj.

Figure 6.4. Original (left) and resulting schema (right) generated by Seasons_l1_lj.

6.3.2 Seasons_l1_lj operator: resulting fact table

Next, in Table 6.4 we outline an algorithm to generate the resulting fact table ft’. We describe how

ft is transformed into ft’; however, we emphasize that in an actual implementation ft should remain

intact.

Table 6.4. Seasons_l1_lj operator algorithm.

l1

f

lj

m1, ..., mm

l1 lj

g1m1, ..., g1mm, ...,
gpm1, ..., gpmm

All

Season

All All

SEASON
dimension

SUBY1
dimension

Z

SUBY2
dimension

Z

All All All All All

TIME
dimension

Seasons_l1_lj

All

F F’

Y dimension

fl1 flk fl1 flk

 92

 Seasons_l1_lj(ft)
Input: Fact table ft
Output: Fact table ft’
Procedure:
Step 1. Compute the seasons for each member of l1 with regard to the members of lj. The results make up a SEASON
dimension schema instance. Let a be a member of l1, b a member of lj, and U the set of TRGs along the path l1 ≼' l2 ≼'
l3 … ≼' lj. A member of Season level includes the following attributes: SeasonNumber is the season number of a in b,
dom(SeasonNumber) = ℕ. If U = then SeasonNumber = 1. SeasonStart and SeasonEnd define the season of a in b,
dom(SeasonStart) = dom(SeasonEnd) = dom(f). If U = then SeasonStart = Start(LS) and SeasonEnd = End(LS),
where LS is the lifespan interval of a.
Step 2. Insert the SEASON dimension schema instance, generated in Step 1, into the fact table ft. Each fact instance fi
ft is associated with a member of Season level as follows. Let W be the set of members of Season level corresponding to
a member of fi.l1. The member w W associated with fi is {w | w W AND w.SeasonStart <= fi.f <= w.SeasonEnd}.
Step 3. Generate the SUBY1 dimension schema instance. SUBY1 is copied (set Z of levels) from the Y dimension
schema instance as illustrated in Figure 6.4.
Step 4. Insert the SUBY1 dimension schema instance, generated in Step 3, into the fact table ft. Each fact instance fi ft
is associated with r, a member of lj, such that RUP_l1_lj(fi.l1, fi.f) = r.
Step 5. Generate the SUBY2 dimension schema instance as explained in Subsection 6.4.1.
Step 6. Remove the TIME dimension from ft and aggregate the measures for the rest of dimensions: [AL, GDL](ft), where
AL = g1(m1), …, gp(m1), …, g1(mm), …, gp(mm) and GDL = LF’. The aggregation operator [Datta 1999] (see
Subsection 3.5.1) receives as parameters: i) a cube (ft), ii) a list of elements gi(mj) where gi is an aggregate function G
and mj a measure M, and iii) a set of grouping dimension levels (LF’). The output is a fact table ft’.

Example 6.3. Consider a sample data of the fact table Sales shown in Table 6.5. The resulting fact

schema of the Seasons_Salesperson_Store(Sales) operation is shown in Figure 6.5 and the resulting

fact table in Table 6.6. We assume the seasons of Example 6.1 and G = {SUM, AVG}. The

operation is outlined in Figure 6.6. We assume only two products in order to simplify the drawing

of the four dimensions.

Note that in the resulting fact table, Store becomes a bottom level and the SEASON dimension

plays the role of a TIME dimension. For example, the first fact instance in Table 6.6 shows that sp1

in his first season in st1, which took place between day 1 and day 45, sold three units of product pd1.

Note that the first two fact instances in Table 6.5 contribute to the generation of the first fact

instance in Table 6.6. In Table 6.5, rows that are included in the season of a salesperson are shown

with the same colour, the corresponding colour is used in Table 6.6.

As Table 6.6 shows, our operator provides a simple mechanism to find and calculate data

specifically focused on seasons. In general, the farther l1 and lj are in the dimension hierarchy, the

more complex the process accomplished by Seasons_l1_lj. For example, consider the

Seasons_Salesperson_Status(Sales) operation; the corresponding season S for a salesperson sp1 in a

status sta1 is computed checking that during S, sp1 is associated only with stores that rollup to status

sta1. Refer to Example 6.1 and Figure 6.2.

 93

Figure 6.5. Resulting schema of Seasons_Salesperson_Store(Sales) operation.

Table 6.5. Sample data of Sales fact table.

Bottom levels Measures

Day Salesperson Product Units_sold Sale_value
1 sp1 pd1 2 2000
8 sp1 pd1 1 1000
8 sp1 pd2 1 500

28 sp1 pd2 1 500
50 sp1 pd1 1 1000
88 sp1 pd1 3 3000

320 sp1 pd1 1 1000
325 sp1 pd2 1 500
350 sp1 pd2 2 1000
500 sp1 pd1 2 2000
507 sp1 pd1 1 1000
521 sp1 pd1 1 1000
535 sp1 pd1 3 3000
1 sp2 pd1 3 3000
10 sp2 pd1 1 1000

Table 6.6. Resulting fact table of Seasons_Salesperson_Store(Sales) operation. (1) = SUMUnits_sold, (2)=
SUMSale_value, (3) = AVGUnits_sold, and (4) = AVGSale_value.

SUMUnits_sold
SUMSale_value
AVGUnits_sold
AVGSale_value

 Sales’

Season

All All

Salesperson

Product

Category

 = Day

All

Status

 = Semester

Store

All

 94

Bottom levels Measures

Season
(SeasonNumber,

SeasonStart,
SeasonEnd)

Salesperson Store Product (1) (2) (3) (4)

s1 = (1, 1, 45) sp1 st1 pd1 3 3000 1.5 1500
s1 = (1, 1, 45) sp1 st1 pd2 2 1000 1 500
s2 = (1, 46, 210) sp1 st2 pd1 4 4000 4 2000
s3 = (2, 211, 390) sp1 st1 pd1 1 1000 1 1000
s3 = (2, 211, 390) sp1 st1 pd2 1 1500 1.5 750
s4 = (2, 481, 540) sp1 st2 pd1 7 7000 1.75 1750
s5 = (1, 1, 150) sp2 st2 pd1 4 4000 2 2000

Figure 6.6. Outline of the Seasons_Salesperson_Store(Sales) operation.

6.3.3 Season queries examples

Table 6.7 presents solutions to the user requests of Table 6.3 using our season operator. We use the

multidimensional query language of Datta [1999], which operates with cubes as the essential unit of

input and output for all operators. In addition to the operators selection () and aggregation (), see

Section 3.5.1, we use here the join of cubes (⋈):

⋈: relates two cubes having one or more dimensions in common.

sp1 sp2 spn

day 1

day 2

day k pd2
pd1

SALESPERSON

 st1
st2

stp s2
s1

STORE sj

s1

sj

PRODUCT

Seasons_Salesperson_Store

s2

PRODUCT

SEASON

SEASON

TIME pd2

pd1

 st1
st2

stp

STORE

sp1 sp2 spn

SALESPERSON

sp1 sp2 spn

SALESPERSON

 95

Notation: Cube1 ⋈ Cube2 = Cube3.

Besides, we propose the notation LevelName.AttributeName, e.g., Season.SNumber,

Salesperson.Salary; in order to reach the attributes of levels, since Datta’s language lacks this

feature.

Table 6.7. Season queries examples.

User request
Let Cube1 = [SUM(SUMUnits_sold) AS SumUnits, {Season, Salesperson,

Store}] (Seasons_Salesperson_Store(Sales))
Query

Total number of units sold by salesperson sp1
in all his seasons in store st1, i.e., when he has
worked in st1.

[SUM(SumUnits), {Salesperson}](Salesperson = sp1 AND Store = st1(Cube1))

Total number of units sold by salesperson sp1
in his first season in st1.

Salesperson = sp1 AND Store = st1 AND Season.SeasonNumber = 1(Cube1)

Total number of units sold by each salesperson
in each season in each store.

Cube1

Season (including season number) and store
when the total number of units sold by
salesperson sp1 was the highest.

i) Cube2 = [MAX(SumUnits) AS MaxUnits, {Salesperson}](Salesperson =

sp1(Cube1))

ii) SumUnits = MaxUnits(Cube1 ⋈ Cube2)
Total value sold by each salesperson in his
first two seasons in status B.

i) Cube3 = Seasons_Salesperson_Status(Sales)
ii)[SUM(SUMSale_value), {Salesperson}](Status = B AND

Season.SeasonNumber < 3 (Cube3))

6.4 A brief comparison with SQL

In order to show the expressiveness [Gilman 1984] of our season operator, we formulate in SQL

some of the queries from Table 6.7. We chose SQL because most of the database developers are

familiar with this language. Another option is MDX, a multidimensional query language that has

become a de facto standard for OLAP systems [Whitehorn 2005]. In Figure 6.7, we show some

tables that correspond to a relational implementation of the temporal multidimensional model of

Figure 2.4. The temporal relationship between Salesperson and Store levels is represented by a

relational table Salesperson_Store.

 96

Figure 6.7. Some tables of the relational implementation of our temporal multidimensional model for sales.

Next, we present an SQL formulation to find the total number of units sold by each salesperson in

each season in each store, without using our season operator. The first step is to enumerate the

seasons of each salesperson in each store. To accomplish this task, we use the analytic function

ROW_NUMBER() of SQL-99 [Kline 2004].

CREATE VIEW Season_Salesperson_Store AS

SELECT CodSp, CodSt, ROW_NUMBER() OVER

 (PARTITION BY CodSp, CodSt ORDER BY Start) AS SeasonNumber,

 Start AS SeasonStart, End AS SeasonEnd

FROM Salesperson_Store;

Now, we can find the total number of units sold by each salesperson in each season:

SELECT CodSp, CodSt, SeasonNumber, SUM(Units_sold) AS SumUnits

FROM Sales, Season_Salesperson_Store

WHERE Salesperson = CodSp AND Day BETWEEN SeasonStart AND SeasonEnd

GROUP BY CodSp, CodSt, SeasonNumber;

 Salesperson
CodSp Name
-------- ----------
sp1 Lisa
sp1 Andrew
sp1 Kirsty

…

 Store
CodSt Address
----------- ----------------
st1 Av. 5 - 99
st2 221 Baker St.
st3 South Mall-3
 …
No_store No store

 Salesperson_Store
CodSp CodSt Start End
-------- ----------- ------ ----
sp1 st1 1 45
sp1 st2 46 210
sp1 st1 211 390
sp1 No_store 391 480
sp1 st2 481 540
sp2 st2 1 150

 …

 Sales
Day Salesperson Product Units_sold Sale_value
----- --------------- --------- ------------- -------------
 1 sp1 pd1 2 2000
 8 sp1 pd1 1 1000
 8 sp1 pd2 1 500
28 sp1 pd2 1 500
50 sp1 pd1 1 1000
88 sp1 pd1 3 3000

…

 97

Note that although the analytic function ROW_NUMBER() helps to formulate the query, the

corresponding expression in Table 6.7 (third user request) is shorter and intuitive. On the other

hand, the simulation of the last query from Table 6.7 is more complex, because we need to find the

seasons between two non-consecutive levels in the hierarchy, i.e., Salesperson and Status; we

present an SQL solution in the Appendix.

6.5 Conclusions and future works

Motivated by the reclassifications of members of dimension levels and based on the formal

temporal multidimensional model that we proposed in Chapter 2, we introduced the notion of

season, a notion that gives rise to a family of queries that can support strategic decisions in several

scenarios, such as sales, sports, the environment, customer management, and health care, among

others. We also proposed an OLAP operator that allows us to express queries about seasons in a

concise and simple way. We showed how it can be embedded in a typical multidimensional query

language, and we presented its formal definition. We illustrated our approach through a case study

about retail sales, where we identified and exemplified several season queries.

As a future work there are several issues to develop:

i) to relax the disjointness condition. This could lead to the management of overlapped seasons. For

example, a salesperson could have a season from day 1 to day 90 with a store st1 and another season

from day 60 to day 150 with a store st2,

ii) to split seasons. For example, suppose a salesperson signs two consecutive contracts with the

same store, instead of managing a “big” season that covers the two contracts, a season could be

defined for each contract in order to distinguish them. This could be useful for managing, e.g.,

consecutive presidential terms,

iii) to merge seasons. For example, suppose a salesperson finishes a contract with a store and a

week later renews it; we could ignore this “short” hiatus and define a single season that covers both

contracts, and

iv) to experiment with real data in several domains and analyze the results in order to discover

business trends that may be associated with seasons.

In the following chapter, we extend our operator in order to consider season queries that involve

spatial features. For example, in a sales scenario, where salespersons are rotated through stores, we

could formulate a query such as: What was the total number of units sold by a salesperson in his

first season in a given region R1? (Where R1 is a spatial query window that contains a set of stores).

 98

Chapter 7: Spatial Season Queries on a Spatio-temporal Multidimensional
Model

7.1 Introduction

In Chapter 2 we proposed a formal multigranular multidimensional temporal model where a

member (instance) of a level can be associated with several members of a higher hierarchical level

throughout its lifespan, i.e., a member can be reclassified, e.g., a salesperson can rotate between the

stores. These reclassifications originated the notion of season of reclassification, see Chapter 6.

Informally, a season is a maximum interval during which a member of a level is associated with a

member of a higher level. Note that throughout his lifespan a salesperson can experience several

(disjoint) seasons in the same store. Thus the ordering of the seasons between two members

originates the notion of the nth season, e.g., the first season of salesperson sp1 in store st1, the second

season of sp1 in st1, the first season of sp1 in st2, and so on.

The seasons can originate queries such as: What was the total sales value made by sp1 in his nth

season in st1? This type of query is called season queries and were considered in Chapter 6.

However, in that Chapter we did not consider season queries where spatial features could be

involved, e.g., what was the total sales value made by sp1 in his nth season in region R1? (Where R1

is a spatial query window that contains a set of stores). In this chapter, we extend our work in order

to support this type of query, i.e., spatial season queries. For this purpose, we propose a

Spatial_Season operator in order to facilitate their formulation. Our operator receives a cube and

returns a new one, thus facilitating its integration into a multidimensional query language, and

enabling the composition of queries and the integration of their results. To the best of our

knowledge, there is no language or operator that allows one to formulate spatial season queries in a

concise and simple way.

Although over the last years both spatial and temporal DWs have been an active field of research

[Malinowski 2008], [Golfarelli 2009a], the notion of spatial season queries is not present in any

work we have found in the literature. The works closest to ours are the following. In [Rao 2003],

the authors focus on solving queries such as: What was the total sales value of all stores that are

inside a given region R1? (Where R1 is a spatial query window); however, they do not deal with

members’ reclassifications. Shekhar [2001] proposes an operator that supports spatial aggregation

in the context of a spatial multidimensional database; however, this work also does not deal with

members’ reclassifications. Other works [Pedersen 2001a], [Chamoni 1999], [Mendelzon 2000],

 99

[Malinowski 2006], deal with reclassifications but they do not consider spatial features or season

queries.

This chapter is organized as follows. In Section 7.2, we present a motivating example. In Section

7.3, we propose our Spatial_Season operator and in Sections 7.4 and 7.5, we give examples. In

Section 7.6, we provide some basic experimental results and describe a prototype for the operator.

Finally, in Section 7.7, we present conclusions and outline future work.

7.2 Motivating example

Consider a consortium with stores in the cities of a country. The country is divided territorially into

departments (states), which group the cities. One of the most important subjects of analysis for the

consortium are the sales of products, since from their behaviour may raise strategies for production,

distribution, purchasing, inventory management, marketing, among others. The products are

classified into categories, e.g., cosmetics, meat and dairy products, and the customers are classified

by gender and age groups.

A multidimensional model for representing this scenario is shown in Figure 7.1. Note that Store,

City, and Department are spatial levels. A spatial level is a level that the application needs to keep

its spatial characteristics [Malinowski 2008]. This is captured by its geometry represented using

spatial types [Parent 1999], see examples in Figure 5.9. In addition, the symbol

 is used to

represent the topological relationship inside [Parent 1999], [Schneider 2004] between spatial levels,

e.g., a store is inside a city and a city is inside a department. A sample data of Sales fact relationship

is shown in Table 7.1.

 100

Figure 7.1. A multidimensional model for Sales.

Table 7.1. Sample data of Sales fact relationship.

Bottom levels Measures

Day Product Salesperson Customer Units_sold Sale_value
1 pd1 sp1 cust1 8 40
1 pd2 sp1 cust2 7 70
2 pd1 sp1 cust1 13 65
1 pd2 sp2 cust2 6 60
2 pd1 sp2 cust1 1 5

The salespersons of the consortium tend to rotate between the stores in periods of days. The rotation

is due to factors such as salesperson’s experience, skills, greater number of people in certain stores

at certain times, distribution and launch of products, management of replacements due to vacation,

permissions, sick leaves of the salespersons. Thus a salesperson associated with store st1, may go on

training, and later be associated with store st2 and then return to store st1. The temporary association

between salespersons and stores is shown in Figure 7.1 using = Day (temporary unit to trace their

assignments), see Chapter 2.

The consortium is interested in analyzing how the rotation affects the performance in sales of its

salespersons, e.g., analyzing the effect on the sales of a salesperson when he returns to the stores of

a given region. For example, compare the total sales value of a salesperson in his nth season in a

region regarding his previous seasons in that region. Note that factors such as knowledge acquired

City

Store

Salesperson Customer

Department

Product

Units_sold
Sale_value

Category

Sex Age_group

Sales

Day Month Year

TIME
Dimension

CUSTOMER
Dimension

SALESPERSON
Dimension

PRODUCT
Dimension

 = Day

 = Day

All

All

All All

 101

in previous seasons or training received before returning to a region, can influence the performance

of a salesperson. The results could help identify the training that is beneficial and when it should

take place, the periods for launching products, and the stays (frequency and duration) of the

salespersons in the stores, all with the aim of increasing sales.

Consider the dashed region R1 shown in Figure 7.2. Let us suppose that R1 represents the set of

stores in the western region of a country and consider the query: obtain the total sales value made

by salesperson sp1 in his first season in the stores in the western region of the country. To answer

this query, according to Figure 7.2, the sales made by sp1 in his first and second seasons in st1 and

in his first season in st2, st3, and st4 should be considered. Note that the sales made by sp1

corresponding to his second season in st1 are included because he has not left R1. Thus while sp1

rotates between the stores of R1 without leaving this region, his sales will be part of the total

requested. Eventually, when sp1 leaves R1 and then returns to some store in that region, he begins

his second season in R1 (in Figure 7.2, when sp1 returns to st3 from st6). Moreover, more specialized

queries can be formulated, e.g., obtain the total sales value of cosmetics made to middle-aged

women by sp1 in his first season in the western stores.

Figure 7.2. Rotation of salesperson sp1 between the stores and spatial query window R1.

Similar queries to the previous ones can be applied in other fields. In the military field, where the

military units perform missions at strategic sites, the following query can be formulated: in its third

season when the Red Unit performed missions in sites within the southern region, did the number of

casualties decrease in comparison to the previous two seasons? In the fishing field, where the boats

are regularly assigned to certain fishing spots, the following query may be formulated: What was

the total number of salmon caught by all the boats in their first three seasons in the Polar region?

(Where the Polar region contains a set of specific fishing spots). In the next section, we present an

operator to facilitate the formulation of this type of query.

Notations: City

Store

Department

ct1

ct2

ct3

ct5

cti: City i

sti: Store i

st1

st2

st3

st4
st5

depi: Department i

dep1 dep2

 sp1 begins to
move

between the
stores

 st6

ct4

R1

 102

7.3 The Spatial_Season operator

In order to design an operator to facilitate the formulation of the queries outlined in Section 7.2, we

identify the arguments required by such an operator. Consider Figure 7.3 and the query: obtain the

total sales value made by salesperson sp1 in his first season in the region R2. Assume that the

SALESPERSON dimension is formed as shown in Figure 7.4.

Figure 7.3. Spatial query window R2.

Figure 7.4. SALESPERSON dimension (first version).

Let Q be one sale made by sp1 in his first season in st1. Q contributes to the total requested since st1

is inside R2. Assume now that the SALESPERSON dimension is formed as shown in Figure 7.5 and

that the Q sale was made by sp1 when he lived in neighborhood n1, see Figure 7.6. Thus the Q sale

is characterized, from the geographic point-of-view, by store st1 that is inside R2 (and therefore, it

contributes to the total requested) and by the neighborhood n1 which is outside R2 (and therefore, it

does not contribute to the total requested). Therefore, the statement of the query should be clarified

to avoid this ambiguity.

ct1

st1

st2

st3 R2

City

Store

Salesperson

 = Day

All

 103

Figure 7.5. SALESPERSON dimension (second version).

Figure 7.6. Neighborhoods of city ct1 and spatial query window R2.

Thus the user must specify, in the statement of his query, the corresponding geographic context: i)

to obtain the total sales value made by sp1 in his first season in the stores of R2 or ii) obtain the total

sales value made by sp1 in his first season in the neighborhoods of R2. That is, the geographic

context indicates the geographic elements of interest associated with the facts and that are included

in a given spatial query window. Note that in the second interpretation, and according to Figure 7.6,

the sales made by sp1 in st1, st2, and st3, contribute to the total requested if they were made when sp1

was in his first season in n2.

On the other hand, note that it is possible that in a moment in time, a salesperson lives in a

neighborhood of a city different from the city of the store where he works. That is, in time t the city

associated with a salesperson along the path that goes by the Store level might be different from the

city associated with the salesperson along the path that goes by the Neighborhood level. Thereby,

Salesperson.Store.City and Salesperson.Neighborhood.City represent different geographic contexts.

The first refers to the city where the salesperson works (store) and the second refers to the city

where he lives (neighborhood). Thus a sale might be referred to two cities: the city of the store

where the sale was made, and the city where the salesperson (that made the sale) lives.

ct1

st1

st2

st3 R2

n3

n2

n3

n2

ct1

n1 n1

City

Store

Salesperson

 = Day

Neighborhood

 = Day

All

 104

In order to facilitate the formulation of this type of query, we define a Spatial_Season operator. Our

operator receives as arguments: i) a spatial query window, ii) a geographic context, c) a list of

aggregates, where an aggregate is an aggregate function applied to a measure, and iv) a cube. Our

operator returns a cube as well. For example, consider a cube corresponding to the schema of Figure

7.1, the region R2 of Figure 7.3 and the geographic context Salesperson.Store. For each salesperson

in Sales his seasons in R2 are calculated. Each season has its start and end time (SStart and SEnd

attributes) and its corresponding order number (SNumber attribute). The facts are grouped into their

respective seasons along with the aggregates requested.

For example, assume that the facts (day 5, pd1, sp1, cust1, 10, 50), (day 28, pd1, sp1, cust1, 15, 75),

(day 19, pd2, sp1, cust1, 8, 80), and (day 35, pd2, sp1, cust1, 5, 50) are the only ones that are part of

the first season of salesperson sp1 in the region R2, a season that takes place between day 1 and day

40. When applying the Spatial_Season operator with the aggregate list {SUM(Sale_value)} the

operator generates two facts: (s1, pd1, sp1, cust1, 125) and (s1, pd2, sp1, cust1, 130). These results

show that the salesperson sp1 sold in his first season (s1) in the region R2 to customer cust1, a total

value of 125 of the product pd1 and a total value of 130 of the product pd2.

We define the following syntax for the operator Spatial_Season: Spatial_SeasonW, GC, AL(C) = C’,

where:

i) W (Window): is the spatial query window, e.g., region R1 in Figure 7.2 and region R2 in

Figure 7.3,

ii) GC (Geographic Context): is a path expression that indicates the geographic context.

The expression is formed by the level names separated by dots, it starts with the bottom

level of one dimension and must end with a spatial level of the same dimension, e.g.,

Salesperson.Store and Salesperson.Store.City are valid geographic contexts,

iii) AL (Aggregate List): is a list of elements g(m) where g is an aggregate function such as

SUM, MAX, COUNT and m is a measure, e.g., {SUM(Sale_value), MAX(Units_sold)}.

Each g(m) generates a measure with name gm, e.g., the previous list generates the names

SUMSale_value and MAXUnits_sold,

iv) C (Cube): is the cube on which the Spatial_Season operator is applied, and

v) C’: is the resulting cube.

Note that our Spatial_Season operator satisfies the closure property, i.e., the results of an operator

are again elements of the data model [Haase 2004]. Our operator takes a cube (C) as an argument

 105

and returns a new cube (C’), thus facilitating its integration into a multidimensional query language,

and enabling the composition of queries and the integration of their results, see Section 7.5.

For simplicity, we have considered W as a single region; however, in a more general sense, W may

represent a region set. The interpretation of a spatial season query in this situation remains the same,

e.g., consider the set R formed by the two search regions in Figure 7.7. Now consider a query such

as: What was the total sales value made by a salesperson in his first season in R? To answer this

query, we must consider the sales made by the salesperson from the moment he enters a store

contained in R (st1, st5, or st6), until the salesperson goes out of the stores in that region. Note that

while the salesperson rotates between the stores contained in R, all his sales are part of his first

season in that region. Eventually, when the salesperson leaves R and then returns to some store in

that region, he begins his second season in R.

Figure 7.7. Rotation of a salesperson between the stores and two search regions (region set R).

The corresponding schema for the resulting cube C’ is generated as follows:

i) We preserve all the dimensions of the schema of the original cube (C) except the TIME

dimension,

ii) The TIME dimension is replaced by a SEASON dimension with a homonymous level with

attributes SStart, SEnd, and SNumber, and

iii) The measures are generated from the aggregate list as explained in iii) in the previous list.

In Figure 7.8 we outline the original and the resulting schema generated by Spatial_Season and in

Table 7.2 we outline an algorithm to generate the resulting cube C’. We describe how C is

transformed into C’; however, we emphasize that in an actual implementation C should remain

intact.

Notations: City

Store

Department

ct1

ct2

ct3

ct5

cti: City i

sti: Store i

st1

st2

st3

st4
st5

depi: Department i

dep1 dep2

 A salesperson
begins to

move
between the

stores

st6

ct4

 106

Figure 7.8. Spatial_Season operator: a) original schema and b) resulting schema.

AL = {g(m)i} where m �{m1, …, mm}.

Table 7.2. Spatial_Season operator algorithm.

 Spatial_SeasonW, GC, AL(C) = C’
Input: Cube C
Output: Cube C’
Procedure:
Step 1. Let highest_level be the highest level of GC. Identify the members of highest_level, which is a spatial level, that
are contained in the spatial query window W.
Step 2. Let lowest_level be the lowest level of GC. For each member of lowest_level compute its seasons with regard to
the region W and considering the members identified in the Step 1. For this purpose, consider the periods of association
between the members of lowest_level and highest_level. The results make up a SEASON dimension with a level Season
and attributes SStart, SEnd, and SNumber.
Step 3. Insert the SEASON dimension, generated in Step 2, into the cube C. Each fact instance f C is associated with
a member of Season level as follows. Let SM be the set of members of Season level corresponding to the member
f.lowest_level. The member sm SM associated with the fact instance f is {sm | sm SM AND sm.SeasonStart <=
f.time_level <= sm.SeasonEnd}, where f.time_level refers to the member of the bottom level of the TIME dimension
associated with f (remember that we use the symbol ‘.’ to reach the attributes of a level).
Step 4. Remove the TIME dimension from C and aggregate the measures, according to the aggregate list AL, for the
rest of dimensions. The output is a cube C’.

7.4 Spatial_Season operator example

Consider the cube of Figure 7.9 corresponding to the schema of Figure 7.1, region R1 of Figure 7.2,

and the periods of association of sp1 with the stores of Figure 7.10. The results of the operation

Spatial_SeasonR1, Salesperson.Store, {SUM(Sale_value)}(Sales) are shown in Figure 7.11 and in Figure 7.12.

The algorithm is illustrated in Table 7.3.

m1, ...,
mm

{gmi}

SEASON
dimension

F F’

Other
dimensions

Spatial
level

GC
(Geographic

Context)

Spatial_SeasonW, GC, AL(C)

TIME
dimension

Season All

All Other
dimensions

Spatial
level

GC
(Geographic

Context)

All

 107

Figure 7.9. Sample data of Sales fact table.

Figure 7.10. Periods of association of salesperson sp1 with the stores.

 st1 1 40

 st2 41 100

 st4 101 150

 st1 151 200

 st3 201 225

 st5 226 300

 st6 301 400

 st3 401 550

 st4 551 613

 st6 614 790

 …

 …

Periods of the first season
of sp1 in stores inside
region R1.

Periods of sp1 in stores
outside region R1.

Periods of the second
season of sp1 in stores
inside R1.

First season of sp1
in stores inside R1:

[day 1, day 225]

Periods of sp1 in stores
outside region R1.

Second season of sp1
in stores inside R1:

[day 401, day 613]

Store From To
 (day) (day)

Day Salesperson Product Customer Units_sold Sale_value

 1 sp1 pd1 cust1 8 40

 1 sp1 pd2 cust2 7 70

 2 sp1 pd1 cust1 13 65

…

225 sp1 pd2 cust2 5 50

226 sp1 pd1 cust30 3 15

…

400 sp1 pd1 cust35 11 55

401 sp1 pd2 cust1 2 20

401 sp1 pd1 cust2 6 30

402 sp1 pd2 cust1 4 40

…

613 sp1 pd1 cust2 16 80

614 sp1 pd1 cust30 9 45

…

…

Sales made by sp1 in
his first season in
stores inside R1.

Sales made by sp1 in
stores outside R1.

Sales made by sp1 in
his second season in
stores inside R1.

Sales made by sp1 in
stores outside R1.

Sales of other
salespersons.

 108

Figure 7.11. Results of Spatial_SeasonR1, Salesperson.Store, {SUM(Sale_value)}(Sales) = Sales’.

The results of Figure 7.11 show, e.g., that salesperson sp1 sold during his first season in the region

R1, that elapsed between day 1 and day 225, a total value of (70 + … + 50) of the product pd2 to

customer cust2.

Figure 7.12. Spatial_Season operator: a) original cube and b) resulting cube.

(The operator is illustrated for a single salesperson).

Table 7.3. Example of Spatial_Season operator algorithm.

Spatial_SeasonR1, Salesperson.Store, {SUM(Sale_value)}(Sales) = Sales’
Input: Cube Sales
Output: Cube Sales’
Procedure:
Step 1. The highest level of GC = Salesperson.Store is Store. Stores contained in R1 = {st1, st2, st3, st4}.
Step 2. The lowest level of GC = Salesperson.Store is Salesperson. For example, to the salesperson sp1 and considering
his periods of association with the stores of Figure 7.10 his seasons are {s1, s2} where s1 = (day 1, day 225, 1) and s2 =
(day 401, day 613, 2).
Step 3. For example, consider the third fact instance (day 2, pd1, sp1, cust1, 13, 65) of Figure 7.9. This fact instance is
associated with the season s1 because day 1 <= day 2 <= day 225.
Step 4. The TIME dimension is removed from the cube C. The cube C is aggregated for AL = {SUM(Sale_value)} and
for the rest of dimensions: {SEASON, SALESPERSON, PRODUCT, CUSTOMER}. The results are shown in Figure
7.11 and they make up the resulting cube Sales’. Note that a measure SUMSale_value is included there.

7.5 Spatial season queries examples

 custr

cust2

cust1 pd2
pd1

pdp

s1 s2 sq

Spatial_SeasonW, GC, AL(Sales)

SEASON

PRODUCT

pd2
pd1

pdp

 custr

cust2

cust1

Sales cube of a
single salesperson

CUSTOMER CUSTOMER

TIME

PRODUCT day
1

day
2

day
n

 Season Salesperson Product Customer SUMSale_value

(SStart, SEnd, SNumber)

s1 = (day 1, day 225, 1) sp1 pd1 cust1 40 + 65 + …

s1 = (day 1, day 225, 1) sp1 pd2 cust2 70 + … + 50

s2 = (day 401, day 613, 2) sp1 pd2 cust1 20 + 40 + …

s2 = (day 401, day 613, 2) sp1 pd1 cust2 30 + … + 80

 …

 109

Table 7.4 presents formulations to some spatial season queries using our spatial season operator.

We use the multidimensional query language of Datta [1999], which operates with cubes as the

essential unit of input and output for all operators, see Subsections 3.5.1 and 6.3.3.

Table 7.4. Spatial season queries examples.

User request
Let Cube1 = Spatial_SeasonR1, Salesperson.Store,

{SUM(Sale_value)}(Sales)
Query

Total sales value made by sp1 in his first
season in the stores in the western region
(R1).

[SUM(SUMSale_value), {Salesperson}]Salesperson = sp1 AND

Season.SNumber = 1(Cube1)
Total sales value of cosmetics made to
middle-aged women by sp1 in his first
season in the stores in the western region
(R1).

[SUM(SUMSale_value), {Salesperson}]Salesperson = sp1 AND

Season.SNumber = 1 AND Product.Category = Cosmetics AND Customer.Sex =

Female AND Customer.Age_group = Middle-aged(Cube1)
Total sales value made by sp1 in all his
seasons in the stores in the western region
(R1).

[SUM(SUMSale_value), {Salesperson}]Salesperson = sp1(Cube1)

Total sales value made by all salespersons
in their three first seasons in the stores in
the western region (R1).

[SUM(SUMSale_value), {Salesperson}]Season.SNumber < 4(Cube1)

Total sales value made by sp1 in his second
season in the neighborhoods from the
region R2.

i) Cube2 = Spatial_SeasonR2, Salesperson.Neighborhood,

{SUM(Sale_value)}(Sales)

ii) [SUM(SUMSale_value), {Salesperson}]Salesperson = sp1 AND

Season.SNumber = 2(Cube2)

7.6 Some basic experiments and prototype

In order to make some basic experiments, we analyzed data from a Colombian company that sells

cosmetics. This company has branches in several towns in the department of Antioquia. Its

salespersons are rotated between the branches. Usually a salesperson stays in a branch during a

week. In his first visit to a branch, a salesperson gets in touch with potential costumers and paves

the way for future sales in his subsequent visits. In Figure 7.13 we present the results of analyzing

the first six seasons of six salespersons in a given region that contains several branches. Although,

more extensive experiments and analysis are needed in order to try to identify possible behaviors,

these results suggest that the total sales value made by a salesperson tends to increase in his first

four seasons and then tends to stabilize.

 110

Figure 7.13. Total sales value made by six salespersons in their first six seasons.

In order to show the feasibility of our proposal, we developed a prototype where we simulated our

Spatial_Season operator. We use Java and an Oracle 10g database with its spatial features (spatial

data types and operators). We chose a relational implementation for our multidimensional model for

Sales. Similarly, as we did in Section 6.4, we create tables to store information about sales (the fact

table), salespersons, stores, cities, the temporal relationship between salesperson and stores,

products, etc. The tables for stores and cities include an attribute of type SDO_GEOMETRY (the

fundamental spatial data type in Oracle) to represent the location of a store (a point) and of a city (a

region).

Figure 7.14 can give the reader a better idea about our interface. Salespersons are listed on the far

left of the screen. Cities are represented by blue regions. Stores are represented by small squares of

different colours; their names also appear with its corresponding colour in the top centre of the

screen. There are five input boxes on the far right of the screen; these are intended to allow the user

to set the values (season numbers) for his queries as described below.

Season
6

$1000

$5000

$10000

$15000

$20000

Salesperson 1

Salesperson 2

Salesperson 3

Salesperson 4

Salesperson 5

Salesperson 6

Season
5

Season
4

Season
3

Season
2

Season
1

 111

Figure 7.14. Prototype interface for spatial season queries.

To define a spatial season query using our graphical interface, the user must follow these steps: i) to

choose a salesperson from the left list of salespersons, ii) to depict a spatial query window. In order

to do that, the user must drag the mouse with the left button pressed, around the set of stores that he

wants to enclose, iii) to set the values for season numbers. For example, if the user wants to focus

on the first season of the salesperson that he chose, he must enter the number 1 in the top right input

box, then press Enter key, iv) to mark the checkbox “Realizar consulta para temporada dentro de la

region”, and v) to press the bottom left button “Consulta con región pintada”. Figure 7.15 and

Figure 7.16 present an example of a user-defined spatial season query using our interface.

 112

Figure 7.15. Definition of a spatial season query.

Figure 7.16. Result of a spatial season query.

 113

Note that in step iii) the user can specify, using the different right input boxes, the condition for

season numbers in several ways: seasons between the second and the fourth one, seasons greater

than the third one, seasons less than the fifth one. Although the prototype in its current state has

several limitations, e.g., it does not support complex Boolean conditions, it only aggregates a

measure using SUM function, and it computes seasons only for a single salesperson; it allows us to

glimpse the possibilities of building a robust system where users can take advantage of graphical

capabilities, which simplify their work and at the same time, free them from the burden of

remembering the query language syntax. In this sense, our prototype can be considered a first

attempt to create a visual query tool for spatial query seasons.

7.7 Conclusions and future work

In this chapter, we proposed an operator to facilitate the formulation of spatial season queries within

the context of a multidimensional model, i.e., queries such as: What was the total sales value of

cosmetics made by a salesperson to middle-aged women in his first season in the stores of a given

geographic region? (A spatial query window). This type of query can help to evaluate the

performance of the salespersons in the wake of their rotation between the stores. Furthermore, these

queries can be useful in other domains too, where several phenomena are involved in a recurring

manner in a geographic scenario, e.g., analyze both the material and human losses caused by a

hurricane in its nth season in a city, department, or country. This can help not only to take preventive

measures but also to evaluate their effectiveness.

As future work, we plan to incorporate our operator in MDX [Whitehorn 2005]. However, at first

glance there are two drawbacks that ought to be considered: first MDX has no spatial features and

second MDX does not support temporal relationships between levels.

On the other hand, the temporality that exists between two levels can generate a complex data type:

a trajectory. For example, a salesperson rotation between the stores defines a trajectory. We believe

that the management of a trajectory as a first-class element in a DW, see Subsection 1.1.3 and

Chapter 5, can similarly generate interesting queries, e.g., analyze the performance of the

salespersons that have followed similar trajectories, where the notion of similarity of trajectories

should be defined. For example, two salesperson trajectories could be considered similar if they

have in common at least 75% of stores visited. The works [Brakatsoulas 2004], [Orlando 2007],

[Marketos 2008], [Spaccapietra 2008] are points of departure for these issues.

 114

Chapter 8: Conclusions, Future Work, and Publications

8.1 Conclusions and future work

This thesis was motivated by the dynamics of a variety of changes that can take place in a DW. In

the first part, we considered three issues related with spatial and temporal DWs: i) management of

reclassifications that can occur with different temporal units in a dimension, ii) support for the

change in the degree of containment, and iii) extensions to the map cube operator. In the second

part, we addressed the representation of a trajectory as a complex measure in a conceptual spatial

multidimensional model. In the third part, we introduced the notion of season of reclassification, a

notion derived from reclassification trajectories, and proposed query constructs to facilitate the

formulation of season queries and spatial season queries. These issues summarized our

contributions.

Our main contribution was the formalization of the notion of season and its related query

constructs. Therefore, this can be considered the core of our work.

We also believe we have paved the way toward the incorporation of a trajectory as a first-class

element into a DW. This issue opens a wide spectrum of research possibilities: query languages,

uncertainty management, storage, physical structures, among others. In particular, the trajectory

uncertainty management in a DW is a promising issue. The essential idea is to try to fill missing

information in a trajectory relying on historical data related with other “similar” trajectories.

Obviously, the notion of similarity of trajectories must be formally defined. In addition, scenarios

where the objects move on a predefined path, as in the case of public transport systems, may help

complete the missing information.

Visual capabilities are also required, not only because trajectories are inherently spatio-temporal

complex elements, but also because decision-makers are used to graphic interfaces that allow the

recognition, in a friendly way, of possible patterns. In particular, we showed how a basic graphic

interface that mimics spatial season queries, hides the mathematical complexity associated with this

type of query, thus facilitating the formulation of the user requests.

In the course of our work, we performed some basic experiments in order to show the expediency of

our proposals. Although these basic experiments suggested some incipient behaviours, we are aware

that more rigorous and detailed experiments must be conducted to assess the practical value of our

 115

work. In the same vein, the incorporation of our query constructs to commercial query languages is

a must. Although we showed an incipient implementation using an SQL-like approach, a

comparison with more specialized OLAP languages is needed to evaluate, e.g., their expressiveness.

With the development of our multidimensional model, the formalization of the notion of season and

season query constructs, along with our basic prototype, experiments, and language comparisons;

we have achieved all the proposed objectives. We also have fulfilled the requirements regarding the

number of journal papers that must be accepted for the completion of a doctoral degree in our

University. The doctoral program requires 1 paper accepted in a journal (indexed in Colciencias,

Category A). In addition to other publications, see Section 8.2 and references, we fulfil this

requirement with 4 journal papers: [Moreno 2010a], [Moreno 2010b], [Moreno 2010c], and

[Moreno 2010d].

Finally, the reader is referred at the end of each chapter where more specific future works are posed.

8.2 Publications

 [Moreno 2010b] Season queries on a temporal multidimensional model.

Mathematical and Computer Modelling, Elsevier, 52(7-8), 2010.

Indexed in Colciencias (Category A2) and in ISI SCI (Institute for Scientific Information,

Science Citation Index).

 [Moreno 2010a] Cambio en el grado de inclusión en un modelo multidimensional.

Revista Facultad de Ingeniería Universidad de Antioquia, accepted for publication, 2010.

Indexed in Colciencias (Category A1) and in ISI SCI.

 [Moreno 2010c] Reclassification queries in a geographical data warehouse.

Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, accepted for publication,

2010.

 Indexed in Colciencias (Category A1) and in ISI SCI.

 [Moreno 2010d] A conceptual trajectory multidimensional model.

DYNA, accepted for publication, 2010.

Indexed in Colciencias (Category A1) and in ISI SCI.

 [Moreno 2009b] A multigranular temporal multidimensional model.

1st IEEE MiproBIS Conference on Business Intelligence Systems, Opatija, Croatia, 2009.

 [Moreno 2007a] Estado del arte de los modelos multidimensionales espacio temporales.

 116

Revista Avances en Sistemas e Informática, 4(1), 2007.

Indexed in Colciencias (Category C).

 [Moreno 2007b] Un acercamiento a los modelos multidimensionales espacio temporales.

VII Jornadas Iberoamericanas de Ingeniería de Software e Ingeniería del Conocimiento

(JIISIC), Lima, Perú, 2007.

Appears in DBLP (Digital Bibliography & Library Project).

 [Moreno 2008a] Una extensión espacial al operador data cube.

Revista Avances en Sistemas e Informática, 5(1), 2008.

Indexed in Colciencias (Category C).

 A shorter version [Moreno 2008b] of the previous paper was also published in:

III CCC, Congreso Colombiano de Computación, Medellín, Colombia, 2008.

 [Moreno 2009a] Extending the map cube operator with multiple spatial aggregate functions

and map overlay.

17th International Conference on Geoinformatics, Fairfax, USA, 2009.

Appears in IEEE Xplore Digital Library.

 [Moreno 2009c] Supporting the change in the degree of containment in a multidimensional

model.

Journal of Information Technology and Control, 38(4), 2009.

Indexed in ISI SCI.

 117

Appendix: Seasons Between Salesperson and Status: An SQL Solution

Next, we present an SQL solution to find the total sale value of each salesperson in his first two

seasons in status B, the last user request in Table 6.7. The first step is to determine for each season

of a salesperson in a store, the intersection with the seasons of stores in statuses. To accomplish this

task, we create the following view:

CREATE VIEW V1 AS

SELECT CodSp, SpSt.Start AS Salesperson_Start, SpSt.End AS Salesperson_End,

 CodStatus, StSta.Start AS Status_Start, StSta.End AS Status_End

FROM Salesperson_Store AS SpSt, Store_Status AS StSta

WHERE SpSt.CodSt = StSta.CodSt AND

 ((SpSt.Start BETWEEN StSta.Start AND StSta.End) OR

 (SpSt.End BETWEEN StSta.Start AND StSta.End) OR

 (SpSt.Start < StSta.Start AND SpSt.End > StSta.End)

);

Now, we create a second view to determine for each tuple of V1 exactly which days correspond

with the salesperson in the corresponding status:

CREATE VIEW V2 AS

SELECT CodSp, CASE WHEN Salesperson_Start <= Status_Start THEN

 Status_Start ELSE Salesperson_Start

 END AS New_Status_Start,

 CASE WHEN Salesperson_End <= Status_End THEN

 Salesperson_End ELSE Status_End

 END AS New_Status_End,

 CodStatus

FROM V1;

The next step is to find the maximum continuous intervals of each salesperson in each status, i.e.,

the seasons of salespersons in statuses. Although it is possible to formulate a cumbersome SQL

query to accomplish this task, we preferred to use the procedural extensions for SQL, i.e., SQL

PSM (Persistent Stored Modules [ISO/IEC 2008]). In the following, we use Oracle’s PL/SQL

 118

[Oracle 2009], which is based on SQL PSM. Season_Salesperson_Status is an auxiliary table to

store the seasons between salespersons and statuses.

DECLARE

CURSOR Sorted IS SELECT * FROM V2 ORDER BY CodSp, New_Status_Start;

Current_Row Sorted%ROWTYPE;

Next_Row Sorted%ROWTYPE;

Status_End V2.New_Status_End%TYPE;

Flag NUMBER(1) := 0;

BEGIN

OPEN Sorted;

FETCH Sorted INTO Current_Row;

IF Sorted%FOUND THEN

 Status_End := Current_Row.New_Status_End;

 LOOP

 FETCH Sorted INTO Next_Row;

 EXIT WHEN Sorted%NOTFOUND;

 WHILE Current_Row.CodSp = Next_Row.CodSp AND

 Current_Row.CodStatus = Next_Row.CodStatus LOOP

 Status_End := Next_Row.New_Status_End;

 FETCH Sorted INTO Next_Row;

 EXIT WHEN Sorted%NOTFOUND;

 END LOOP;

 INSERT INTO Season_Salesperson_Status VALUES

 (Current_Row.CodSp, Current_Row.New_Status_Start, Status_End, Current_Row.CodStatus);

 IF Sorted%NOTFOUND THEN Flag := 1;

 ELSE Flag := 0;

 END IF;

 Current_Row := Next_Row;

 Status_End := Next_Row.New_Status_End;

 END LOOP;

 IF Flag = 0 THEN

 INSERT INTO Season_Salesperson_Status VALUES

 119

 (Current_Row.CodSp, Current_Row.New_Status_Start, Status_End, Current_Row.CodStatus);

 END IF;

END IF;

CLOSE Sorted;

END;

Now, it follows an analogous process as developed in Subsection 6.4.4, enumeration of the seasons

of each salesperson in each status:

CREATE VIEW VSeason_Salesperson_Status AS

SELECT CodSp, CodStatus, ROW_NUMBER() OVER

 (PARTITION BY CodSp, CodStatus ORDER BY Start) AS SeasonNumber,

 Start AS SeasonStart, End AS SeasonEnd

FROM Season_Salesperson_Status;

Finally, we can find the total sale value of each salesperson in his first two seasons in status B:

SELECT CodSp, SUM(Sale_value) AS SumSale_value

FROM Sales, VSeason_Salesperson_Status

WHERE Salesperson = CodSp AND Day BETWEEN SeasonStart AND SeasonEnd AND

CodStatus = 'B' AND SeasonNumber < 3

GROUP BY CodSp;

This example illustrates the expressiveness of our season operator, which accomplishes the same

task in a concise way as is shown in the last row of Table 6.7 (second column).

 120

References

[Agarwal 1996] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R.

Ramakrishnan, S. Sarawagi, On the computation of multidimensional aggregates, 22nd

International Conference on Very Large Data Bases (VLDB), pp. 506-521, Mumbai, India, 1996.

[Agrawal 1997] R. Agrawal, A. Gupta, S. Sarawagi, Modeling multidimensional databases, 13th

International Conference on Data Engineering (ICDE), pp. 232-243, Birmingham, UK, 1997.

[Allen 1983] J. F. Allen, Maintaining knowledge about temporal intervals, Communications of the

ACM 26(11), 1983, pp. 832-843.

[Alvares 2007] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. Fernandes de Macêdo, B.Moelans, A.

A. Vaisman, A model for enriching trajectories with semantic geographical information, 15th ACM

International Symposium on Advances in Geographic Information Systems (ACM-GIS), pp. 162-

169, Seattle (Washington), USA, 2007.

[Balmin 2000] A. Balmin, T. Papadimitriou, Y. Papakonstantinou, Hypothetical queries in an

OLAP environment, 26th International Conference on Very Large Data Bases (VLDB), pp. 220-

231, Cairo, Egypt, 2000.

[Bédard 2001] Y. Bédard, T. Merrett, J. Han, Fundaments of spatial data warehousing for

geographic knowledge discovery, chapter in: H. Miller (ed.), Geographic data mining and

knowledge discovery, Taylor & Francis, UK, 2001, pp. 53-73.

[Bimonte 2005] S. Bimonte, A. Tchounikine, M. Miquel, Towards a spatial multidimensional

model, 8th International Workshop on Data Warehousing and OLAP (DOLAP), pp. 39-46, Bremen,

Germany, 2005.

[Blaschka 1999] M. Blaschka, C. Sapia, G. Höfling, On schema evolution in multidimensional

databases, 1st International Conference on Data Warehousing and Knowledge Discovery (DaWaK),

pp. 153-164, Florence, Italy, 1999.

[Body 2002] M. Body, M. Miquel, Y. Bèdard, A. Tchounikine, A multidimensional and

multiversion structure for OLAP applications, 5th International Workshop on Data Warehousing

and OLAP (DOLAP), pp. 1-6, McLean, USA, 2002.

[Brakatsoulas 2004] S. Brakatsoulas, D. Pfoser, N. Tryfona, Modeling, storing, and mining

moving object databases, 8th International Database Engineering and Applications Symposium

(IDEAS), pp. 68-77, Coimbra, Portugal, 2004.

[Braz 2007] F. J. Braz, Trajectory data warehouses: Proposal of design and application to exploit

data, 9th Brazilian Symposium on GeoInformatics (GeoInfo), pp. 61-72, Campos do Jordão, Brazil,

2007.

 121

[Cabibbo 1997] L. Cabibbo, R. Torlone, Querying multidimensional databases, 6th International

Workshop on Database Programming Languages (DBPL-6), pp. 319-335, Estes Park, USA, 1997.

[Cely 2006] J. Cely, Y. Bédard, El paradigma multidimensional: desarrollo de nuevas tecnologías

para la gestión del territorio, 12th International Symposium of the Latinoamerican Society of

Remote Sensing and Spatial Information Systems (SELPER), pp. 1-11, Cartagena, Colombia, 2006.

[Chamoni 1999] P. Chamoni, S. Stock, Temporal structures in data warehousing, 1st International

Conference on Data Warehousing and Knowledge Discovery (DaWaK), pp. 353-358, Florence,

Italy, 1999.

[Codd 1993] E. F. Codd, Providing OLAP (On-Line Analytical Processing) to user analysts: an IT

mandate, Technical Report, E.F. Codd Associates, USA, 1993.

[Damiani 2006] M. L. Damiani, S. Spaccapietra, Spatial data warehouse modeling, chapter in: J.

Darmont (ed.), Processing and managing complex data for decision support, Idea Publishers, UK,

2006, pp. 1-27.

[Da Silva 2004] J. Da Silva, V. Times, R. Fidalgo, R. Barros, Towards a web service for

geographic and multidimensional processing, 6th Brazilian Symposium on Geoinformatics

(GeoInfo), pp. 1-18 , Campos do Jordão, São Paulo, Brazil, 2004.

[Datta 1999] A. Datta, H. Thomas, The cube data model: A conceptual model and algebra for on-

line analytical processing in data warehouses, Decision Support Systems 27(3), 1999, pp. 289-301.

[Eder 2001] J. Eder, C. Koncilia, Changes of dimension data in temporal data warehouses, 3rd

International Conference on Data Warehousing and Knowledge Discovery (DaWaK), pp. 284-293,

Munich, Germany, 2001.

[Ferreira 2001] A. C. Ferreira, M. L. Campos, A. K. Tanaka, An architecture for spatial and

dimensional analysis integration, 6th World Multiconference on Systemics, Cibernetics and

Informatics (SCI), pp. 392-395, Orlando, USA, 2001.

[Ferri 2000] F. Ferri, E. Pourabbas, M. Rafanelli, F. L. Ricci, Extending geographic databases for a

query language to support queries involving statistical data, 12th International Conference on

Scientific and Statistical Database Management (SSDBM), pp. 220-230, Berlin, Germany, 2000.

[Fidalgo 2004] R. Fidalgo, V. Times, J. da Silva, F. da Fonseca de Souza, GeoDWFrame: a

framework for guiding the design of geographical dimensional schemas, 6th International

Conference on Data Warehousing and Knowledge Discovery (DaWaK), pp. 26-37, Zaragoza,

Spain, 2004.

[Freese 2004] R. Freese, Automated lattice drawing, 2nd International Conference on Formal

Concept Analysis (ICFCA), pp. 112-127, Sydney, Australia, 2004.

 122

[Frentzos 2005] E. Frentzos, K. Gratsias, N. Pelekis, Y. Theodoridis, Nearest neighbor search on

moving object trajectories, 9th Symposium on Spatial and Temporal Databases (SSTD), pp. 328-

345, Angra dos Reis, Brazil, 2005.

[Gilman 1984] L. Gilman, A.J. Rose, APL: An interactive approach, 3rd Edn., Wiley, New York,

1984.

[Golfarelli 1998] M. Golfarelli, D. Maio, S. Rizzi, The dimensional fact model: A conceptual

model for data warehouses, International Journal of Cooperative Information Systems 7(2-3), 1998,

pp. 215-247.

[Golfarelli 2006] M. Golfarelli, J. Lechtenbörger, S. Rizzi, G. Vossen, Schema versioning in data

warehouses: Enabling cross-version querying via schema augmentation, Data and Knowledge

Engineering, 59(2), 2006, pp. 435-459.

[Golfarelli 2009a] M. Golfarelli, S. Rizzi, A survey on temporal data warehousing, International

Journal of Data Warehousing and Mining 5(1), 2009, pp. 1-17.

[Golfarelli 2009b] M. Golfarelli, S. Rizzi, Data Warehouse Design: Modern principles and

methodologies, 1st Edn., McGraw-Hill Osborne Media, New York, 2009.

[Gray 1997] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F.

Pellow, H. Pirahesh, Data cube: a relational aggregation operator generalizing group-by, cross-tab,

and sub totals, Data Mining and Knowledge Discovery 1(1), 1997, pp. 29-53.

[Guc 2008] B. Guc, M. May, Y. Saygin, C. Körner, Semantic annotation of GPS trajectories, 11th

International Conference on Geographic Information Science (AGILE), pp. 1-9, Girona, Spain,

2008.

[Güting 2005] R. H. Güting, M. Schneider, Moving objects databases, 1st Edn., Morgan

Kaufmann, San Francisco, 2005.

[Gyssens 1997] M. Gyssens, L. Lakshmanan, A foundation for multi-dimensional databases, 23rd

International Conference on Very Large Data Bases (VLDB), pp. 106-115, Athens, Greece, 1997.

[Haase 2004] P. Haase, J. Broekstra, A. Eberhart, R. Volz, A comparison of RDF query languages,

3rd International Semantic Web Conference (ISWC), pp. 502-517, Hiroshima, Japan, 2004.

[Han 1998] J. Han, N. Stefanovic, K. Koperski, Selective materialization: An efficient method for

spatial data cube construction, 2nd Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD), pp. 114-158, Melbourne, Australia, 1998.

[Hurtado 1999] C. A. Hurtado, A. O. Mendelzon, A. A. Vaisman, Updating OLAP dimensions,

ACM 2nd International Workshop on Data Warehousing and OLAP (DOLAP), pp. 60-66, Kansas

City, USA, 1999.

[Inmon 2005] W. H. Inmon, Building the data warehouse, 4th Edn., Wiley, New York, 2005.

 123

[IMT 2009] IMT: Instituto Mexicano del Transporte, Anuario estadístico de accidentes en

carreteras federales 1997 – 2006, date of access July 2009, available in:

 http://www.imt.mx/Espanol/Publicaciones/

[ISO/IEC 2008] International Organization for Standardization (ISO)/International Electrotechnical

Commission(IEC), ISO/IEC 9075-4:2008 SQL part 4: Persistent Stored Modules (SQL/PSM), ISO

Standard, USA, 2008.

[Jarke 2003] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis, Fundamentals of data

warehouses, 2nd Edn., Springer, New York, 2003.

[Jensen 2004] C. S. Jensen, A. Kligys, T. B. Pedersen, I. Timko, Multidimensional data modeling

for location-based services, VLDB Journal 13(1), 2004, pp. 1-21.

[Kaas 2004] C. Kaas, T. B. Pedersen, B. Rasmussen, Schema evolution for stars and snowflakes,

6th International Conference on Enterprise Information Systems (ICEIS), pp. 425-433, Porto,

Portugal, 2004.

[Kimball 2008] R. Kimball, M. Ross, W. Thornthwaite, J. Mundy, B. Becker, The data warehouse

lifecycle toolkit, 2nd Edn., Wiley, New York, 2008.

[Kline 2004] K. E. Kline, D. Kline, B. Hunt, SQL in a nutshell, 1st Edn., O’Reilly, New York,

2004.

[Kouba 2000] Z. Kouba, K. Matousek, P. Miksovský, On data warehouse and GIS integration, 11th

International Conference on Database and Expert Systems Applications (DEXA), pp. 604-613,

London, UK, 2000.

[Kumar 2008] N. Kumar, A. Gangopadhyay, S. Bapna, G. Karabatis, Z. Chen, Measuring

interestingness of discovered skewed patterns in data cubes, Decision Support Systems 46(1), 2008,

pp. 429-439.

[Lehner 1998] W. Lehner, J. Albrecht, H. Wedekind, Normal forms for multidimensional

databases, 10th International Conference on Scientific and Statistical Database Management

(SSDBM), pp. 63-72, Capri, Italy, 1998.

[Lenz 1997] H. Lenz, A. Shoshani, Summarizability in OLAP and statistical data bases, 9th

International Conference on Scientific and Statistical Database Management (SSDBM), pp. 132-

143, Olympia (Washington), USA,1997.

[Levine 1995] J. R. Levine, T. Manson, D. Brown, Lex and Yacc, 2nd Edn., O’Reilly and

Associates,1995.

[Longley 2005] P. A. Longley, M. F. Goodchild, D. J. Maguire, D. W. Rhind, Geographical

information systems: Principles, techniques, management and applications, 2nd Edn., Wiley, New

York, 2005.

 124

[Lu 2003] C. T. Lu, Y. Kou, H. Wang, S. Shekhar, P. Zhang, R. Liu, Two Web-based spatial data

visualization and mining systems: mapcube & mapview, 1st International Workshop on Next

Generation Geospatial Information (N2GI), No pages, Cambridge (Massachusetts), USA, 2003.

[Malinowski 2006] E. Malinowski, E. Zimányi, A conceptual solution for representing time in data

warehouse dimensions, 3rd Asia-Pacific Conference on Conceptual Modelling (APCCM 2006), pp.

45-54, Hobart, Tasmania, 2006.

[Malinowski 2008] E. Malinowski, E. Zimányi, Advanced data warehouse design: From

conventional to spatial and temporal applications, 1st Edn., Springer, New York, 2008.

[Marketos 2008] G. Marketos, E. Frentzos, I Ntoutsi, N. Pelekis, A. Raffaetà, Y. Theodoridis,

Building real world trajectory warehouses, 7th International ACM SIGMOD Workshop on Data

Engineering for Wireless and Mobile Access (MobiDE), pp. 1-8, Vancouver, Canada, 2008.

[Mendelzon 2000] A. O. Mendelzon, A. A. Vaisman, Temporal queries in OLAP, 26th

International Conference on Very Large Data Bases (VLDB), pp. 242-253, Cairo, Egypt, 2000.

[Microsoft 2009] Microsoft, Microsoft SQL Server 2008, date of access June 2009, available in:

http://www.microsoft.com/sqlserver/2008/en/us.

[Miksovský 2001] P. Miksovský, Z. Kouba, GOLAP - Geographical online analytical processing,

12th International Conference Database and Expert Systems Applications (DEXA), pp. 442-449,

Munich, Germany, 2001.

[Moreno 2007a] F. Moreno, F. Arango, Estado del arte de los modelos multidimensionales espacio

temporales, Revista Avances en Sistemas e Informática 4(1), 2007, pp. 11-16.

[Moreno 2007b] F. Moreno, F. Arango, Un acercamiento a los modelos multidimensionales

espacio temporales, VII Jornadas Iberoamericanas de Ingeniería de Software e Ingeniería del

Conocimiento (JIISIC), pp. 93-98, Lima, Perú, 2007.

[Moreno 2008a] F. Moreno, A. Urrea, Una extensión espacial al operador data cube, Revista

Avances en Sistemas e Informática 5(1), 2008. pp. 19-28.

[Moreno 2008b] F. Moreno, A. Urrea, Una revisión al operador map cube, Tercer Congreso

Colombiano de Computación (CCC), No pages, Medellín, Colombia, 2008.

[Moreno 2009a] F. Moreno, F. Arango, Extending the map cube operator with multiple spatial

aggregate functions and map overlay, 17th International Conference on Geoinformatics

(Geoinformatics), No pages, Fairfax, USA, 2009.

[Moreno 2009b] F. Moreno, F. Arango, R. Fileto, A multigranular temporal multidimensional

model, 1st IEEE Conference on Business Intelligence Systems (miproBIS), pp. 1-6, Opatija,

Croatia, 2009.

 125

[Moreno 2009c] F. Moreno, F. Arango, I. Uribe, Supporting the change in the degree of

containment in a multidimensional model, Journal of Information Technology and Control 38(4),

2009, pp. 311-318.

[Moreno 2010a] F. Moreno, F. Arango, I. Uribe, Cambio en el grado de inclusión en un modelo

multidimensional, Revista Facultad de Ingeniería Universidad de Antioquia (53), 2010. pp. 236-

244.

[Moreno 2010b] F. Moreno, F. Arango, R. Fileto, Season queries on a temporal multidimensional

model, Mathematical and Computer Modelling 52(7-8), 2010. pp. 103-109.

[Moreno 2010c] F. Moreno, F. Arango, J. Echeverry, Reclassification queries in a geographical

data warehouse, Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, accepted to

appear, 2010.

[Moreno 2010d] F. Moreno, F. Arango, A conceptual trajectory multidimensional model, DYNA,

accepted to appear, 2010.

[Morzy 2004] T. Morzy, R. Wrembel, On querying versions of multiversion data warehouse, 7th

ACM International Workshop on Data Warehousing and OLAP (DOLAP), pp. 92-101, Washington

D.C., USA, 2004.

[OLAP Council 2009] OLAP Council, The OLAP glossary, date of access May 2009, available in:

http://www.olapcouncil.org/research/resrchly.htm.

[Oracle 2008] Oracle Corporation, Oracle Database PL/SQL language reference 11g release 1

(11.1), Oracle Publishers, San Francisco, 2008.

[Orlando 2007a] S. Orlando, R. Orsini, A. Raffaeta, A. Roncato, Trajectory data warehouses:

Design and implementation issues, Journal of Computing Science and Engineering 1(2), 2007, pp.

211-232.

[Orlando 2007b] S. Orlando, R. Orsini, A. Raffaetà, A. Roncato, C. Silvestri, Spatio-temporal

aggregations in trajectory data warehouses, 9th International Conference on Data Warehousing and

Knowledge Discovery (DaWaK), pp. 66-77, Regensburg, Germany, 2007.

[Parent 1999] C. Parent, S. Spaccapietra, E. Zimányi, Spatio-temporal conceptual models: Data

structures + space + time, 7th ACM International Symposium on Advances in Geographic

Information Systems (ACM-GIS), pp. 26-33, Kansas, USA, 1999.

[Pedersen 2001a] T. B. Pedersen, C. S. Jensen, C. E. Dyreson, A foundation for capturing and

querying complex multidimensional data, Information Systems 26(5), 2001, pp. 383-423.

[Pedersen 2001b] T. B. Pedersen, N. Tryfona, Pre-aggregation in spatial data warehouses, 7th

International Symposium on Advances in Spatial and Temporal Databases (SSTD), pp. 460-480,

Redondo Beach, USA, 2001.

 126

[Pelekis 2007] N. Pelekis, I. Kopanakis, I. Ntoutsi, G. Marketos, Y. Theodoridis, Mining trajectory

databases via a suite of distance operators, 23rd International Conference on Data Engineering

(ICDE), pp. 575-584, Istanbul, Turkey, 2007.

[Pentaho 2009] Pentaho, Pentaho BI Suite Enterprise Edition, date of access June 2009, available

in: http://www.pentaho.com.

[Pestana 2005] G. Pestana, M. Mira da Silva, Multidimensional modeling based on spatial,

temporal and spatio-temporal stereotypes, 25th ESRI International User Conference (ESRI), No

pages, San Diego, USA, 2005.

[Pourabbas 2005] E. Pourabbas, Cooperation of geographic and multidimensional databases,

chapter in: M. Khosrow-Pour (ed.), Encyclopedia of information science and technology (I), Idea

Group, UK, 2005, pp. 596-602.

[Rao 2003] F. Rao, L. Zhang, X. Yu, Y. Li, Y. Chen, Spatial hierarchy and OLAP-favored search

in spatial data warehouse, 6th International Workshop on Data Warehousing and OLAP (DOLAP),

pp. 48-55, New Orleans, USA, 2003.

[Ravat 2006] F. Ravat, O. Teste, Supporting data changes in multidimensional data warehouses,

International Review on Computers and Software 1(3), 2006, pp. 251-259.

[Rechy-Ramirez 2006] E. Rechy-Ramirez, E. Benitez-Guerrero, A model and language for

bitemporal schema versioning in data warehouses, 15th International Conference on Computing

(CIC), pp. 309-314, Mexico City, Mexico, 2006.

[Rivest 2001] S. Rivest, Y. Bédard, P. Marchand, Toward better support for spatial decision

making: defining the characteristics of spatial on-line analytical processing (SOLAP), Geomatica

55(4), 2001, pp. 539-555.

[Sampaio 2006] M. C. Sampaio, A. Gomes de Sousa, C. de Souza Baptista, Towards a logical

multidimensional model for spatial data warehousing and OLAP, ACM 9th International Workshop

on Data Warehousing and OLAP (DOLAP), pp. 83-90, Arlington, Virginia, USA, 2006.

[Schneider 2004] M. Schneider, Computing the topological relationship of complex regions, 15th

International Conference on Database and Expert Systems Applications (DEXA), pp. 844-853,

Zaragoza, Spain, 2004.

[Scotch 2005] M. Scotch, B. Parmanto, SOVAT: Spatial OLAP Visualization and Analysis Tool,

38th Annual Hawaii International Conference on Systems Sciences (HICSS), pp. 1-7, Big Island

(Hawaii), USA, 2005.

[Shekhar 2001] S. Shekhar, C. T. Lu, X. Tan, S. Chawla, Map cube: A visualization tool for spatial

data warehouses, chapter in: H. J. Miller, J. Han (eds.), Geographic data mining and knowledge

discovery, Taylor and Francis, USA, 2001, pp. 73-108.

 127

[Spaccapietra 2008] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. Fernandes de Macêdo, F.

Porto, C. Vangenot, A conceptual view on trajectories, Data & Knowledge Engineering 65(1),

2008, pp. 126-146.

[SpotCrime 2009] SpotCrime: The most comprehensive online source of crime information, date

of access February 2009, available in:

http://www.spotcrime.com

[Timko 2005] I. Timko, C. E. Dyreson, T. B. Pedersen, Probabilistic data modeling and querying

for location-based data warehouses, 17th International Conference on Scientific and Statistical

Database Management (SSDBM), pp. 273-282, Santa Barbara, USA, 2005.

[Tomlin 1990] C. D. Tomlin, Geographic information systems and cartographic modeling, 1st

Edn., Prentice Hall, London, 1990.

[Torgler 2007] B. Torgler, S. Schmidt, What shapes player performance in soccer? Empirical

findings from a panel analysis, Applied Economics Taylor and Francis Journals 39(18), 2007, pp.

2355-2369.

[Torlone 2003] R. Torlone, Conceptual multidimensional models, chapter in: M. Rafanelli (ed.),

Multidimensional databases: Problems and solutions, Idea Group, UK, 2003, pp. 69-90.

[Turner 2010] K. Turner, S. J. Bespalko, Spatial data technologies, 89th Transportation Research

Board Meeting (TRB), No pages, Washington, USA, 2010.

[Vaisman 2004] A. A. Vaisman, A. O. Mendelzon, W. Ruaro, S. G. Cymerman, Supporting

dimension updates in an OLAP server, Information Systems 29(2), 2004, pp. 165-185.

[Vassiliadis 1998] P. Vassiliadis, Modeling multidimensional databases, cubes and cube

operations, 10th International Conference on Scientific and Statistical Database Management

(SSDBM), pp. 53-62, Capri, Italy, 1998.

[Vazirgiannis 2001] M. Vazirgiannis, O. Wolfson, A spatiotemporal model and language for

moving objects on road networks, 7th Symposium on Spatial and Temporal Databases SSTD, pp.

20-35, Redondo Beach, USA, 2001.

[Whitehorn 2005] M. Whitehorn, R. Zare, M. Pasumansky, Fast track to MDX, 2nd Edn.,

Springer, New York, 2005.

[Wrembel 2007] R. Wrembel, B. Bebel, Metadata management in a multiversion data warehouse,

Journal of Data Semantics 8(1), 2007, pp. 118-157.

[Yang 1998] J. Yang, J. Widom, Maintaining temporal views over non-temporal information

sources for data warehousing, 6th International Conference on Extending Database Technology

(EDBT), pp. 389-403, Valencia, Spain, 1998.

[Yin 2000] S. Yin, L. Hui, Integration of web-based GIS and online analytical processing, 21st

Asian Conference on Remote Sensing (ACRS), No pages, Taipei, Taiwan, 2000.

